// MIT License // // Copyright(c) 2020 Jordan Peck (jordan.me2@gmail.com) // Copyright(c) 2020 Contributors // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files(the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and / or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions : // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. // // .'',;:cldxkO00KKXXNNWWWNNXKOkxdollcc::::::;:::ccllloooolllllllllooollc:,'... ...........',;cldxkO000Okxdlc::;;;,,;;;::cclllllll // ..',;:ldxO0KXXNNNNNNNNXXK0kxdolcc::::::;;;,,,,,,;;;;;;;;;;:::cclllllc:;'.... ...........',;:ldxO0KXXXK0Okxdolc::;;;;::cllodddddo // ...',:loxO0KXNNNNNXXKK0Okxdolc::;::::::::;;;,,'''''.....''',;:clllllc:;,'............''''''''',;:loxO0KXNNNNNXK0Okxdollccccllodxxxxxxd // ....';:ldkO0KXXXKK00Okxdolcc:;;;;;::cclllcc:;;,''..... ....',;clooddolcc:;;;;,,;;;;;::::;;;;;;:cloxk0KXNWWWWWWNXKK0Okxddoooddxxkkkkkxx // .....';:ldxkOOOOOkxxdolcc:;;;,,,;;:cllooooolcc:;'... ..,:codxkkkxddooollloooooooollcc:::::clodkO0KXNWWWWWWNNXK00Okxxxxxxxxkkkkxxx // . ....';:cloddddo___________,,,,;;:clooddddoolc:,... ..,:ldx__00OOOkkk___kkkkkkxxdollc::::cclodkO0KXXNNNNNNXXK0OOkxxxxxxxxxxxxddd // .......',;:cccc:| |,,,;;:cclooddddoll:;'.. ..';cox| \KKK000| |KK00OOkxdocc___;::clldxxkO0KKKKK00Okkxdddddddddddddddoo // .......'',,,,,''| ________|',,;;::cclloooooolc:;'......___:ldk| \KK000| |XKKK0Okxolc| |;;::cclodxxkkkkxxdoolllcclllooodddooooo // ''......''''....| | ....'',,,,;;;::cclloooollc:;,''.'| |oxk| \OOO0| |KKK00Oxdoll|___|;;;;;::ccllllllcc::;;,,;;;:cclloooooooo // ;;,''.......... | |_____',,;;;____:___cllo________.___| |___| \xkk| |KK_______ool___:::;________;;;_______...'',;;:ccclllloo // c:;,''......... | |:::/ ' |lo/ | | \dx| |0/ \d| |cc/ |'/ \......',,;;:ccllo // ol:;,'..........| _____|ll/ __ |o/ ______|____ ___| | \o| |/ ___ \| |o/ ______|/ ___ \ .......'',;:clo // dlc;,...........| |::clooo| / | |x\___ \KXKKK0| |dol| |\ \| | | | | |d\___ \..| | / / ....',:cl // xoc;'... .....'| |llodddd| \__| |_____\ \KKK0O| |lc:| |'\ | |___| | |_____\ \.| |_/___/... ...',;:c // dlc;'... ....',;| |oddddddo\ | |Okkx| |::;| |..\ |\ /| | | \ |... ....',;:c // ol:,'.......',:c|___|xxxddollc\_____,___|_________/ddoll|___|,,,|___|...\_____|:\ ______/l|___|_________/...\________|'........',;::cc // c:;'.......';:codxxkkkkxxolc::;::clodxkOO0OOkkxdollc::;;,,''''',,,,''''''''''',,'''''',;:loxkkOOkxol:;,'''',,;:ccllcc:;,'''''',;::ccll // ;,'.......',:codxkOO0OOkxdlc:;,,;;:cldxxkkxxdolc:;;,,''.....'',;;:::;;,,,'''''........,;cldkO0KK0Okdoc::;;::cloodddoolc:;;;;;::ccllooo // .........',;:lodxOO0000Okdoc:,,',,;:clloddoolc:;,''.......'',;:clooollc:;;,,''.......',:ldkOKXNNXX0Oxdolllloddxxxxxxdolccccccllooodddd // . .....';:cldxkO0000Okxol:;,''',,;::cccc:;,,'.......'',;:cldxxkkxxdolc:;;,'.......';coxOKXNWWWNXKOkxddddxxkkkkkkxdoollllooddxxxxkkk // ....',;:codxkO000OOxdoc:;,''',,,;;;;,''.......',,;:clodkO00000Okxolc::;,,''..',;:ldxOKXNWWWNNK0OkkkkkkkkkkkxxddooooodxxkOOOOO000 // ....',;;clodxkkOOOkkdolc:;,,,,,,,,'..........,;:clodxkO0KKXKK0Okxdolcc::;;,,,;;:codkO0XXNNNNXKK0OOOOOkkkkxxdoollloodxkO0KKKXXXXX // // VERSION: 1.0.1 // https://github.com/Auburn/FastNoise // In *one* C or C++ file, use #define FNL_IMPL to generate implementation #ifndef FASTNOISELITE_H #define FASTNOISELITE_H // Switch between using floats or doubles for input position typedef float FNLfloat; //typedef double FNLfloat; #if defined(__cplusplus) extern "C" { #endif #include #include #include #include // Enums typedef enum { FNL_NOISE_OPENSIMPLEX2, FNL_NOISE_OPENSIMPLEX2S, FNL_NOISE_CELLULAR, FNL_NOISE_PERLIN, FNL_NOISE_VALUE_CUBIC, FNL_NOISE_VALUE } fnl_noise_type; typedef enum { FNL_ROTATION_NONE, FNL_ROTATION_IMPROVE_XY_PLANES, FNL_ROTATION_IMPROVE_XZ_PLANES } fnl_rotation_type_3d; typedef enum { FNL_FRACTAL_NONE, FNL_FRACTAL_FBM, FNL_FRACTAL_RIDGED, FNL_FRACTAL_PINGPONG, FNL_FRACTAL_DOMAIN_WARP_PROGRESSIVE, FNL_FRACTAL_DOMAIN_WARP_INDEPENDENT } fnl_fractal_type; typedef enum { FNL_CELLULAR_DISTANCE_EUCLIDEAN, FNL_CELLULAR_DISTANCE_EUCLIDEANSQ, FNL_CELLULAR_DISTANCE_MANHATTAN, FNL_CELLULAR_DISTANCE_HYBRID } fnl_cellular_distance_func; typedef enum { FNL_CELLULAR_RETURN_VALUE_CELLVALUE, FNL_CELLULAR_RETURN_VALUE_DISTANCE, FNL_CELLULAR_RETURN_VALUE_DISTANCE2, FNL_CELLULAR_RETURN_VALUE_DISTANCE2ADD, FNL_CELLULAR_RETURN_VALUE_DISTANCE2SUB, FNL_CELLULAR_RETURN_VALUE_DISTANCE2MUL, FNL_CELLULAR_RETURN_VALUE_DISTANCE2DIV, } fnl_cellular_return_type; typedef enum { FNL_DOMAIN_WARP_OPENSIMPLEX2, FNL_DOMAIN_WARP_OPENSIMPLEX2_REDUCED, FNL_DOMAIN_WARP_BASICGRID } fnl_domain_warp_type; /** * Structure containing entire noise system state. * @note Must only be created using fnlCreateState(optional: seed). To ensure defaults are set. */ typedef struct fnl_state { /** * Seed used for all noise types. * @remark Default: 1337 */ int seed; /** * The frequency for all noise types. * @remark Default: 0.01 */ float frequency; /** * The noise algorithm to be used by GetNoise(...). * @remark Default: FNL_NOISE_OPENSIMPLEX2 */ fnl_noise_type noise_type; /** * Sets noise rotation type for 3D. * @remark Default: FNL_ROTATION_NONE */ fnl_rotation_type_3d rotation_type_3d; /** * The method used for combining octaves for all fractal noise types. * @remark Default: None * @remark FNL_FRACTAL_DOMAIN_WARP_... only effects fnlDomainWarp... */ fnl_fractal_type fractal_type; /** * The octave count for all fractal noise types. * @remark Default: 3 */ int octaves; /** * The octave lacunarity for all fractal noise types. * @remark Default: 2.0 */ float lacunarity; /** * The octave gain for all fractal noise types. * @remark Default: 0.5 */ float gain; /** * The octave weighting for all none Domaain Warp fractal types. * @remark Default: 0.0 * @remark */ float weighted_strength; /** * The strength of the fractal ping pong effect. * @remark Default: 2.0 */ float ping_pong_strength; /** * The distance function used in cellular noise calculations. * @remark Default: FNL_CELLULAR_FUNC_DISTANCE */ fnl_cellular_distance_func cellular_distance_func; /** * The cellular return type from cellular noise calculations. * @remark Default: FNL_CELLULAR_RETURN_VALUE_EUCLIEANSQ */ fnl_cellular_return_type cellular_return_type; /** * The maximum distance a cellular point can move from it's grid position. * @remark Default: 1.0 * @note Setting this higher than 1 will cause artifacts. */ float cellular_jitter_mod; /** * The warp algorithm when using fnlDomainWarp... * @remark Default: OpenSimplex2 */ fnl_domain_warp_type domain_warp_type; /** * The maximum warp distance from original position when using fnlDomainWarp... * @remark Default: 1.0 */ float domain_warp_amp; } fnl_state; /** * Creates a noise state with default values. * @param seed Optionally set the state seed. */ fnl_state fnlCreateState(); /** * 2D noise at given position using the state settings * @returns Noise output bounded between -1 and 1. */ float fnlGetNoise2D(fnl_state *state, FNLfloat x, FNLfloat y); /** * 3D noise at given position using the state settings * @returns Noise output bounded between -1 and 1. */ float fnlGetNoise3D(fnl_state *state, FNLfloat x, FNLfloat y, FNLfloat z); /** * 2D warps the input position using current domain warp settings. * * Example usage with fnlGetNoise2D: * ``` * fnlDomainWarp2D(&state, &x, &y); * noise = fnlGetNoise2D(&state, x, y); * ``` */ void fnlDomainWarp2D(fnl_state *state, FNLfloat *x, FNLfloat *y); /** * 3D warps the input position using current domain warp settings. * * Example usage with fnlGetNoise3D: * ``` * fnlDomainWarp3D(&state, &x, &y, &z); * noise = fnlGetNoise3D(&state, x, y, z); * ``` */ void fnlDomainWarp3D(fnl_state *state, FNLfloat *x, FNLfloat *y, FNLfloat *z); // ==================== // Below this line is the implementation // ==================== #if defined(FNL_IMPL) // Constants static const float GRADIENTS_2D[] = { 0.130526192220052f, 0.99144486137381f, 0.38268343236509f, 0.923879532511287f, 0.608761429008721f, 0.793353340291235f, 0.793353340291235f, 0.608761429008721f, 0.923879532511287f, 0.38268343236509f, 0.99144486137381f, 0.130526192220051f, 0.99144486137381f, -0.130526192220051f, 0.923879532511287f, -0.38268343236509f, 0.793353340291235f, -0.60876142900872f, 0.608761429008721f, -0.793353340291235f, 0.38268343236509f, -0.923879532511287f, 0.130526192220052f, -0.99144486137381f, -0.130526192220052f, -0.99144486137381f, -0.38268343236509f, -0.923879532511287f, -0.608761429008721f, -0.793353340291235f, -0.793353340291235f, -0.608761429008721f, -0.923879532511287f, -0.38268343236509f, -0.99144486137381f, -0.130526192220052f, -0.99144486137381f, 0.130526192220051f, -0.923879532511287f, 0.38268343236509f, -0.793353340291235f, 0.608761429008721f, -0.608761429008721f, 0.793353340291235f, -0.38268343236509f, 0.923879532511287f, -0.130526192220052f, 0.99144486137381f, 0.130526192220052f, 0.99144486137381f, 0.38268343236509f, 0.923879532511287f, 0.608761429008721f, 0.793353340291235f, 0.793353340291235f, 0.608761429008721f, 0.923879532511287f, 0.38268343236509f, 0.99144486137381f, 0.130526192220051f, 0.99144486137381f, -0.130526192220051f, 0.923879532511287f, -0.38268343236509f, 0.793353340291235f, -0.60876142900872f, 0.608761429008721f, -0.793353340291235f, 0.38268343236509f, -0.923879532511287f, 0.130526192220052f, -0.99144486137381f, -0.130526192220052f, -0.99144486137381f, -0.38268343236509f, -0.923879532511287f, -0.608761429008721f, -0.793353340291235f, -0.793353340291235f, -0.608761429008721f, -0.923879532511287f, -0.38268343236509f, -0.99144486137381f, -0.130526192220052f, -0.99144486137381f, 0.130526192220051f, -0.923879532511287f, 0.38268343236509f, -0.793353340291235f, 0.608761429008721f, -0.608761429008721f, 0.793353340291235f, -0.38268343236509f, 0.923879532511287f, -0.130526192220052f, 0.99144486137381f, 0.130526192220052f, 0.99144486137381f, 0.38268343236509f, 0.923879532511287f, 0.608761429008721f, 0.793353340291235f, 0.793353340291235f, 0.608761429008721f, 0.923879532511287f, 0.38268343236509f, 0.99144486137381f, 0.130526192220051f, 0.99144486137381f, -0.130526192220051f, 0.923879532511287f, -0.38268343236509f, 0.793353340291235f, -0.60876142900872f, 0.608761429008721f, -0.793353340291235f, 0.38268343236509f, -0.923879532511287f, 0.130526192220052f, -0.99144486137381f, -0.130526192220052f, -0.99144486137381f, -0.38268343236509f, -0.923879532511287f, -0.608761429008721f, -0.793353340291235f, -0.793353340291235f, -0.608761429008721f, -0.923879532511287f, -0.38268343236509f, -0.99144486137381f, -0.130526192220052f, -0.99144486137381f, 0.130526192220051f, -0.923879532511287f, 0.38268343236509f, -0.793353340291235f, 0.608761429008721f, -0.608761429008721f, 0.793353340291235f, -0.38268343236509f, 0.923879532511287f, -0.130526192220052f, 0.99144486137381f, 0.130526192220052f, 0.99144486137381f, 0.38268343236509f, 0.923879532511287f, 0.608761429008721f, 0.793353340291235f, 0.793353340291235f, 0.608761429008721f, 0.923879532511287f, 0.38268343236509f, 0.99144486137381f, 0.130526192220051f, 0.99144486137381f, -0.130526192220051f, 0.923879532511287f, -0.38268343236509f, 0.793353340291235f, -0.60876142900872f, 0.608761429008721f, -0.793353340291235f, 0.38268343236509f, -0.923879532511287f, 0.130526192220052f, -0.99144486137381f, -0.130526192220052f, -0.99144486137381f, -0.38268343236509f, -0.923879532511287f, -0.608761429008721f, -0.793353340291235f, -0.793353340291235f, -0.608761429008721f, -0.923879532511287f, -0.38268343236509f, -0.99144486137381f, -0.130526192220052f, -0.99144486137381f, 0.130526192220051f, -0.923879532511287f, 0.38268343236509f, -0.793353340291235f, 0.608761429008721f, -0.608761429008721f, 0.793353340291235f, -0.38268343236509f, 0.923879532511287f, -0.130526192220052f, 0.99144486137381f, 0.130526192220052f, 0.99144486137381f, 0.38268343236509f, 0.923879532511287f, 0.608761429008721f, 0.793353340291235f, 0.793353340291235f, 0.608761429008721f, 0.923879532511287f, 0.38268343236509f, 0.99144486137381f, 0.130526192220051f, 0.99144486137381f, -0.130526192220051f, 0.923879532511287f, -0.38268343236509f, 0.793353340291235f, -0.60876142900872f, 0.608761429008721f, -0.793353340291235f, 0.38268343236509f, -0.923879532511287f, 0.130526192220052f, -0.99144486137381f, -0.130526192220052f, -0.99144486137381f, -0.38268343236509f, -0.923879532511287f, -0.608761429008721f, -0.793353340291235f, -0.793353340291235f, -0.608761429008721f, -0.923879532511287f, -0.38268343236509f, -0.99144486137381f, -0.130526192220052f, -0.99144486137381f, 0.130526192220051f, -0.923879532511287f, 0.38268343236509f, -0.793353340291235f, 0.608761429008721f, -0.608761429008721f, 0.793353340291235f, -0.38268343236509f, 0.923879532511287f, -0.130526192220052f, 0.99144486137381f, 0.38268343236509f, 0.923879532511287f, 0.923879532511287f, 0.38268343236509f, 0.923879532511287f, -0.38268343236509f, 0.38268343236509f, -0.923879532511287f, -0.38268343236509f, -0.923879532511287f, -0.923879532511287f, -0.38268343236509f, -0.923879532511287f, 0.38268343236509f, -0.38268343236509f, 0.923879532511287f, }; static const float RAND_VECS_2D[] = { -0.2700222198f, -0.9628540911f, 0.3863092627f, -0.9223693152f, 0.04444859006f, -0.999011673f, -0.5992523158f, -0.8005602176f, -0.7819280288f, 0.6233687174f, 0.9464672271f, 0.3227999196f, -0.6514146797f, -0.7587218957f, 0.9378472289f, 0.347048376f, -0.8497875957f, -0.5271252623f, -0.879042592f, 0.4767432447f, -0.892300288f, -0.4514423508f, -0.379844434f, -0.9250503802f, -0.9951650832f, 0.0982163789f, 0.7724397808f, -0.6350880136f, 0.7573283322f, -0.6530343002f, -0.9928004525f, -0.119780055f, -0.0532665713f, 0.9985803285f, 0.9754253726f, -0.2203300762f, -0.7665018163f, 0.6422421394f, 0.991636706f, 0.1290606184f, -0.994696838f, 0.1028503788f, -0.5379205513f, -0.84299554f, 0.5022815471f, -0.8647041387f, 0.4559821461f, -0.8899889226f, -0.8659131224f, -0.5001944266f, 0.0879458407f, -0.9961252577f, -0.5051684983f, 0.8630207346f, 0.7753185226f, -0.6315704146f, -0.6921944612f, 0.7217110418f, -0.5191659449f, -0.8546734591f, 0.8978622882f, -0.4402764035f, -0.1706774107f, 0.9853269617f, -0.9353430106f, -0.3537420705f, -0.9992404798f, 0.03896746794f, -0.2882064021f, -0.9575683108f, -0.9663811329f, 0.2571137995f, -0.8759714238f, -0.4823630009f, -0.8303123018f, -0.5572983775f, 0.05110133755f, -0.9986934731f, -0.8558373281f, -0.5172450752f, 0.09887025282f, 0.9951003332f, 0.9189016087f, 0.3944867976f, -0.2439375892f, -0.9697909324f, -0.8121409387f, -0.5834613061f, -0.9910431363f, 0.1335421355f, 0.8492423985f, -0.5280031709f, -0.9717838994f, -0.2358729591f, 0.9949457207f, 0.1004142068f, 0.6241065508f, -0.7813392434f, 0.662910307f, 0.7486988212f, -0.7197418176f, 0.6942418282f, -0.8143370775f, -0.5803922158f, 0.104521054f, -0.9945226741f, -0.1065926113f, -0.9943027784f, 0.445799684f, -0.8951327509f, 0.105547406f, 0.9944142724f, -0.992790267f, 0.1198644477f, -0.8334366408f, 0.552615025f, 0.9115561563f, -0.4111755999f, 0.8285544909f, -0.5599084351f, 0.7217097654f, -0.6921957921f, 0.4940492677f, -0.8694339084f, -0.3652321272f, -0.9309164803f, -0.9696606758f, 0.2444548501f, 0.08925509731f, -0.996008799f, 0.5354071276f, -0.8445941083f, -0.1053576186f, 0.9944343981f, -0.9890284586f, 0.1477251101f, 0.004856104961f, 0.9999882091f, 0.9885598478f, 0.1508291331f, 0.9286129562f, -0.3710498316f, -0.5832393863f, -0.8123003252f, 0.3015207509f, 0.9534596146f, -0.9575110528f, 0.2883965738f, 0.9715802154f, -0.2367105511f, 0.229981792f, 0.9731949318f, 0.955763816f, -0.2941352207f, 0.740956116f, 0.6715534485f, -0.9971513787f, -0.07542630764f, 0.6905710663f, -0.7232645452f, -0.290713703f, -0.9568100872f, 0.5912777791f, -0.8064679708f, -0.9454592212f, -0.325740481f, 0.6664455681f, 0.74555369f, 0.6236134912f, 0.7817328275f, 0.9126993851f, -0.4086316587f, -0.8191762011f, 0.5735419353f, -0.8812745759f, -0.4726046147f, 0.9953313627f, 0.09651672651f, 0.9855650846f, -0.1692969699f, -0.8495980887f, 0.5274306472f, 0.6174853946f, -0.7865823463f, 0.8508156371f, 0.52546432f, 0.9985032451f, -0.05469249926f, 0.1971371563f, -0.9803759185f, 0.6607855748f, -0.7505747292f, -0.03097494063f, 0.9995201614f, -0.6731660801f, 0.739491331f, -0.7195018362f, -0.6944905383f, 0.9727511689f, 0.2318515979f, 0.9997059088f, -0.0242506907f, 0.4421787429f, -0.8969269532f, 0.9981350961f, -0.061043673f, -0.9173660799f, -0.3980445648f, -0.8150056635f, -0.5794529907f, -0.8789331304f, 0.4769450202f, 0.0158605829f, 0.999874213f, -0.8095464474f, 0.5870558317f, -0.9165898907f, -0.3998286786f, -0.8023542565f, 0.5968480938f, -0.5176737917f, 0.8555780767f, -0.8154407307f, -0.5788405779f, 0.4022010347f, -0.9155513791f, -0.9052556868f, -0.4248672045f, 0.7317445619f, 0.6815789728f, -0.5647632201f, -0.8252529947f, -0.8403276335f, -0.5420788397f, -0.9314281527f, 0.363925262f, 0.5238198472f, 0.8518290719f, 0.7432803869f, -0.6689800195f, -0.985371561f, -0.1704197369f, 0.4601468731f, 0.88784281f, 0.825855404f, 0.5638819483f, 0.6182366099f, 0.7859920446f, 0.8331502863f, -0.553046653f, 0.1500307506f, 0.9886813308f, -0.662330369f, -0.7492119075f, -0.668598664f, 0.743623444f, 0.7025606278f, 0.7116238924f, -0.5419389763f, -0.8404178401f, -0.3388616456f, 0.9408362159f, 0.8331530315f, 0.5530425174f, -0.2989720662f, -0.9542618632f, 0.2638522993f, 0.9645630949f, 0.124108739f, -0.9922686234f, -0.7282649308f, -0.6852956957f, 0.6962500149f, 0.7177993569f, -0.9183535368f, 0.3957610156f, -0.6326102274f, -0.7744703352f, -0.9331891859f, -0.359385508f, -0.1153779357f, -0.9933216659f, 0.9514974788f, -0.3076565421f, -0.08987977445f, -0.9959526224f, 0.6678496916f, 0.7442961705f, 0.7952400393f, -0.6062947138f, -0.6462007402f, -0.7631674805f, -0.2733598753f, 0.9619118351f, 0.9669590226f, -0.254931851f, -0.9792894595f, 0.2024651934f, -0.5369502995f, -0.8436138784f, -0.270036471f, -0.9628500944f, -0.6400277131f, 0.7683518247f, -0.7854537493f, -0.6189203566f, 0.06005905383f, -0.9981948257f, -0.02455770378f, 0.9996984141f, -0.65983623f, 0.751409442f, -0.6253894466f, -0.7803127835f, -0.6210408851f, -0.7837781695f, 0.8348888491f, 0.5504185768f, -0.1592275245f, 0.9872419133f, 0.8367622488f, 0.5475663786f, -0.8675753916f, -0.4973056806f, -0.2022662628f, -0.9793305667f, 0.9399189937f, 0.3413975472f, 0.9877404807f, -0.1561049093f, -0.9034455656f, 0.4287028224f, 0.1269804218f, -0.9919052235f, -0.3819600854f, 0.924178821f, 0.9754625894f, 0.2201652486f, -0.3204015856f, -0.9472818081f, -0.9874760884f, 0.1577687387f, 0.02535348474f, -0.9996785487f, 0.4835130794f, -0.8753371362f, -0.2850799925f, -0.9585037287f, -0.06805516006f, -0.99768156f, -0.7885244045f, -0.6150034663f, 0.3185392127f, -0.9479096845f, 0.8880043089f, 0.4598351306f, 0.6476921488f, -0.7619021462f, 0.9820241299f, 0.1887554194f, 0.9357275128f, -0.3527237187f, -0.8894895414f, 0.4569555293f, 0.7922791302f, 0.6101588153f, 0.7483818261f, 0.6632681526f, -0.7288929755f, -0.6846276581f, 0.8729032783f, -0.4878932944f, 0.8288345784f, 0.5594937369f, 0.08074567077f, 0.9967347374f, 0.9799148216f, -0.1994165048f, -0.580730673f, -0.8140957471f, -0.4700049791f, -0.8826637636f, 0.2409492979f, 0.9705377045f, 0.9437816757f, -0.3305694308f, -0.8927998638f, -0.4504535528f, -0.8069622304f, 0.5906030467f, 0.06258973166f, 0.9980393407f, -0.9312597469f, 0.3643559849f, 0.5777449785f, 0.8162173362f, -0.3360095855f, -0.941858566f, 0.697932075f, -0.7161639607f, -0.002008157227f, -0.9999979837f, -0.1827294312f, -0.9831632392f, -0.6523911722f, 0.7578824173f, -0.4302626911f, -0.9027037258f, -0.9985126289f, -0.05452091251f, -0.01028102172f, -0.9999471489f, -0.4946071129f, 0.8691166802f, -0.2999350194f, 0.9539596344f, 0.8165471961f, 0.5772786819f, 0.2697460475f, 0.962931498f, -0.7306287391f, -0.6827749597f, -0.7590952064f, -0.6509796216f, -0.907053853f, 0.4210146171f, -0.5104861064f, -0.8598860013f, 0.8613350597f, 0.5080373165f, 0.5007881595f, -0.8655698812f, -0.654158152f, 0.7563577938f, -0.8382755311f, -0.545246856f, 0.6940070834f, 0.7199681717f, 0.06950936031f, 0.9975812994f, 0.1702942185f, -0.9853932612f, 0.2695973274f, 0.9629731466f, 0.5519612192f, -0.8338697815f, 0.225657487f, -0.9742067022f, 0.4215262855f, -0.9068161835f, 0.4881873305f, -0.8727388672f, -0.3683854996f, -0.9296731273f, -0.9825390578f, 0.1860564427f, 0.81256471f, 0.5828709909f, 0.3196460933f, -0.9475370046f, 0.9570913859f, 0.2897862643f, -0.6876655497f, -0.7260276109f, -0.9988770922f, -0.047376731f, -0.1250179027f, 0.992154486f, -0.8280133617f, 0.560708367f, 0.9324863769f, -0.3612051451f, 0.6394653183f, 0.7688199442f, -0.01623847064f, -0.9998681473f, -0.9955014666f, -0.09474613458f, -0.81453315f, 0.580117012f, 0.4037327978f, -0.9148769469f, 0.9944263371f, 0.1054336766f, -0.1624711654f, 0.9867132919f, -0.9949487814f, -0.100383875f, -0.6995302564f, 0.7146029809f, 0.5263414922f, -0.85027327f, -0.5395221479f, 0.841971408f, 0.6579370318f, 0.7530729462f, 0.01426758847f, -0.9998982128f, -0.6734383991f, 0.7392433447f, 0.639412098f, -0.7688642071f, 0.9211571421f, 0.3891908523f, -0.146637214f, -0.9891903394f, -0.782318098f, 0.6228791163f, -0.5039610839f, -0.8637263605f, -0.7743120191f, -0.6328039957f, }; static const float GRADIENTS_3D[] = { 0, 1, 1, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 1, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, -1, 0, 0, 0, 1, 1, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 1, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, -1, 0, 0, 0, 1, 1, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 1, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, -1, 0, 0, 0, 1, 1, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 1, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, -1, 0, 0, 0, 1, 1, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 1, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, -1, 0, 0, 1, 1, 0, 0, 0, -1, 1, 0, -1, 1, 0, 0, 0, -1, -1, 0}; static const float RAND_VECS_3D[] = { -0.7292736885f, -0.6618439697f, 0.1735581948f, 0, 0.790292081f, -0.5480887466f, -0.2739291014f, 0, 0.7217578935f, 0.6226212466f, -0.3023380997f, 0, 0.565683137f, -0.8208298145f, -0.0790000257f, 0, 0.760049034f, -0.5555979497f, -0.3370999617f, 0, 0.3713945616f, 0.5011264475f, 0.7816254623f, 0, -0.1277062463f, -0.4254438999f, -0.8959289049f, 0, -0.2881560924f, -0.5815838982f, 0.7607405838f, 0, 0.5849561111f, -0.662820239f, -0.4674352136f, 0, 0.3307171178f, 0.0391653737f, 0.94291689f, 0, 0.8712121778f, -0.4113374369f, -0.2679381538f, 0, 0.580981015f, 0.7021915846f, 0.4115677815f, 0, 0.503756873f, 0.6330056931f, -0.5878203852f, 0, 0.4493712205f, 0.601390195f, 0.6606022552f, 0, -0.6878403724f, 0.09018890807f, -0.7202371714f, 0, -0.5958956522f, -0.6469350577f, 0.475797649f, 0, -0.5127052122f, 0.1946921978f, -0.8361987284f, 0, -0.9911507142f, -0.05410276466f, -0.1212153153f, 0, -0.2149721042f, 0.9720882117f, -0.09397607749f, 0, -0.7518650936f, -0.5428057603f, 0.3742469607f, 0, 0.5237068895f, 0.8516377189f, -0.02107817834f, 0, 0.6333504779f, 0.1926167129f, -0.7495104896f, 0, -0.06788241606f, 0.3998305789f, 0.9140719259f, 0, -0.5538628599f, -0.4729896695f, -0.6852128902f, 0, -0.7261455366f, -0.5911990757f, 0.3509933228f, 0, -0.9229274737f, -0.1782808786f, 0.3412049336f, 0, -0.6968815002f, 0.6511274338f, 0.3006480328f, 0, 0.9608044783f, -0.2098363234f, -0.1811724921f, 0, 0.06817146062f, -0.9743405129f, 0.2145069156f, 0, -0.3577285196f, -0.6697087264f, -0.6507845481f, 0, -0.1868621131f, 0.7648617052f, -0.6164974636f, 0, -0.6541697588f, 0.3967914832f, 0.6439087246f, 0, 0.6993340405f, -0.6164538506f, 0.3618239211f, 0, -0.1546665739f, 0.6291283928f, 0.7617583057f, 0, -0.6841612949f, -0.2580482182f, -0.6821542638f, 0, 0.5383980957f, 0.4258654885f, 0.7271630328f, 0, -0.5026987823f, -0.7939832935f, -0.3418836993f, 0, 0.3202971715f, 0.2834415347f, 0.9039195862f, 0, 0.8683227101f, -0.0003762656404f, -0.4959995258f, 0, 0.791120031f, -0.08511045745f, 0.6057105799f, 0, -0.04011016052f, -0.4397248749f, 0.8972364289f, 0, 0.9145119872f, 0.3579346169f, -0.1885487608f, 0, -0.9612039066f, -0.2756484276f, 0.01024666929f, 0, 0.6510361721f, -0.2877799159f, -0.7023778346f, 0, -0.2041786351f, 0.7365237271f, 0.644859585f, 0, -0.7718263711f, 0.3790626912f, 0.5104855816f, 0, -0.3060082741f, -0.7692987727f, 0.5608371729f, 0, 0.454007341f, -0.5024843065f, 0.7357899537f, 0, 0.4816795475f, 0.6021208291f, -0.6367380315f, 0, 0.6961980369f, -0.3222197429f, 0.641469197f, 0, -0.6532160499f, -0.6781148932f, 0.3368515753f, 0, 0.5089301236f, -0.6154662304f, -0.6018234363f, 0, -0.1635919754f, -0.9133604627f, -0.372840892f, 0, 0.52408019f, -0.8437664109f, 0.1157505864f, 0, 0.5902587356f, 0.4983817807f, -0.6349883666f, 0, 0.5863227872f, 0.494764745f, 0.6414307729f, 0, 0.6779335087f, 0.2341345225f, 0.6968408593f, 0, 0.7177054546f, -0.6858979348f, 0.120178631f, 0, -0.5328819713f, -0.5205125012f, 0.6671608058f, 0, -0.8654874251f, -0.0700727088f, -0.4960053754f, 0, -0.2861810166f, 0.7952089234f, 0.5345495242f, 0, -0.04849529634f, 0.9810836427f, -0.1874115585f, 0, -0.6358521667f, 0.6058348682f, 0.4781800233f, 0, 0.6254794696f, -0.2861619734f, 0.7258696564f, 0, -0.2585259868f, 0.5061949264f, -0.8227581726f, 0, 0.02136306781f, 0.5064016808f, -0.8620330371f, 0, 0.200111773f, 0.8599263484f, 0.4695550591f, 0, 0.4743561372f, 0.6014985084f, -0.6427953014f, 0, 0.6622993731f, -0.5202474575f, -0.5391679918f, 0, 0.08084972818f, -0.6532720452f, 0.7527940996f, 0, -0.6893687501f, 0.0592860349f, 0.7219805347f, 0, -0.1121887082f, -0.9673185067f, 0.2273952515f, 0, 0.7344116094f, 0.5979668656f, -0.3210532909f, 0, 0.5789393465f, -0.2488849713f, 0.7764570201f, 0, 0.6988182827f, 0.3557169806f, -0.6205791146f, 0, -0.8636845529f, -0.2748771249f, -0.4224826141f, 0, -0.4247027957f, -0.4640880967f, 0.777335046f, 0, 0.5257722489f, -0.8427017621f, 0.1158329937f, 0, 0.9343830603f, 0.316302472f, -0.1639543925f, 0, -0.1016836419f, -0.8057303073f, -0.5834887393f, 0, -0.6529238969f, 0.50602126f, -0.5635892736f, 0, -0.2465286165f, -0.9668205684f, -0.06694497494f, 0, -0.9776897119f, -0.2099250524f, -0.007368825344f, 0, 0.7736893337f, 0.5734244712f, 0.2694238123f, 0, -0.6095087895f, 0.4995678998f, 0.6155736747f, 0, 0.5794535482f, 0.7434546771f, 0.3339292269f, 0, -0.8226211154f, 0.08142581855f, 0.5627293636f, 0, -0.510385483f, 0.4703667658f, 0.7199039967f, 0, -0.5764971849f, -0.07231656274f, -0.8138926898f, 0, 0.7250628871f, 0.3949971505f, -0.5641463116f, 0, -0.1525424005f, 0.4860840828f, -0.8604958341f, 0, -0.5550976208f, -0.4957820792f, 0.667882296f, 0, -0.1883614327f, 0.9145869398f, 0.357841725f, 0, 0.7625556724f, -0.5414408243f, -0.3540489801f, 0, -0.5870231946f, -0.3226498013f, -0.7424963803f, 0, 0.3051124198f, 0.2262544068f, -0.9250488391f, 0, 0.6379576059f, 0.577242424f, -0.5097070502f, 0, -0.5966775796f, 0.1454852398f, -0.7891830656f, 0, -0.658330573f, 0.6555487542f, -0.3699414651f, 0, 0.7434892426f, 0.2351084581f, 0.6260573129f, 0, 0.5562114096f, 0.8264360377f, -0.0873632843f, 0, -0.3028940016f, -0.8251527185f, 0.4768419182f, 0, 0.1129343818f, -0.985888439f, -0.1235710781f, 0, 0.5937652891f, -0.5896813806f, 0.5474656618f, 0, 0.6757964092f, -0.5835758614f, -0.4502648413f, 0, 0.7242302609f, -0.1152719764f, 0.6798550586f, 0, -0.9511914166f, 0.0753623979f, -0.2992580792f, 0, 0.2539470961f, -0.1886339355f, 0.9486454084f, 0, 0.571433621f, -0.1679450851f, -0.8032795685f, 0, -0.06778234979f, 0.3978269256f, 0.9149531629f, 0, 0.6074972649f, 0.733060024f, -0.3058922593f, 0, -0.5435478392f, 0.1675822484f, 0.8224791405f, 0, -0.5876678086f, -0.3380045064f, -0.7351186982f, 0, -0.7967562402f, 0.04097822706f, -0.6029098428f, 0, -0.1996350917f, 0.8706294745f, 0.4496111079f, 0, -0.02787660336f, -0.9106232682f, -0.4122962022f, 0, -0.7797625996f, -0.6257634692f, 0.01975775581f, 0, -0.5211232846f, 0.7401644346f, -0.4249554471f, 0, 0.8575424857f, 0.4053272873f, -0.3167501783f, 0, 0.1045223322f, 0.8390195772f, -0.5339674439f, 0, 0.3501822831f, 0.9242524096f, -0.1520850155f, 0, 0.1987849858f, 0.07647613266f, 0.9770547224f, 0, 0.7845996363f, 0.6066256811f, -0.1280964233f, 0, 0.09006737436f, -0.9750989929f, -0.2026569073f, 0, -0.8274343547f, -0.542299559f, 0.1458203587f, 0, -0.3485797732f, -0.415802277f, 0.840000362f, 0, -0.2471778936f, -0.7304819962f, -0.6366310879f, 0, -0.3700154943f, 0.8577948156f, 0.3567584454f, 0, 0.5913394901f, -0.548311967f, -0.5913303597f, 0, 0.1204873514f, -0.7626472379f, -0.6354935001f, 0, 0.616959265f, 0.03079647928f, 0.7863922953f, 0, 0.1258156836f, -0.6640829889f, -0.7369967419f, 0, -0.6477565124f, -0.1740147258f, -0.7417077429f, 0, 0.6217889313f, -0.7804430448f, -0.06547655076f, 0, 0.6589943422f, -0.6096987708f, 0.4404473475f, 0, -0.2689837504f, -0.6732403169f, -0.6887635427f, 0, -0.3849775103f, 0.5676542638f, 0.7277093879f, 0, 0.5754444408f, 0.8110471154f, -0.1051963504f, 0, 0.9141593684f, 0.3832947817f, 0.131900567f, 0, -0.107925319f, 0.9245493968f, 0.3654593525f, 0, 0.377977089f, 0.3043148782f, 0.8743716458f, 0, -0.2142885215f, -0.8259286236f, 0.5214617324f, 0, 0.5802544474f, 0.4148098596f, -0.7008834116f, 0, -0.1982660881f, 0.8567161266f, -0.4761596756f, 0, -0.03381553704f, 0.3773180787f, -0.9254661404f, 0, -0.6867922841f, -0.6656597827f, 0.2919133642f, 0, 0.7731742607f, -0.2875793547f, -0.5652430251f, 0, -0.09655941928f, 0.9193708367f, -0.3813575004f, 0, 0.2715702457f, -0.9577909544f, -0.09426605581f, 0, 0.2451015704f, -0.6917998565f, -0.6792188003f, 0, 0.977700782f, -0.1753855374f, 0.1155036542f, 0, -0.5224739938f, 0.8521606816f, 0.02903615945f, 0, -0.7734880599f, -0.5261292347f, 0.3534179531f, 0, -0.7134492443f, -0.269547243f, 0.6467878011f, 0, 0.1644037271f, 0.5105846203f, -0.8439637196f, 0, 0.6494635788f, 0.05585611296f, 0.7583384168f, 0, -0.4711970882f, 0.5017280509f, -0.7254255765f, 0, -0.6335764307f, -0.2381686273f, -0.7361091029f, 0, -0.9021533097f, -0.270947803f, -0.3357181763f, 0, -0.3793711033f, 0.872258117f, 0.3086152025f, 0, -0.6855598966f, -0.3250143309f, 0.6514394162f, 0, 0.2900942212f, -0.7799057743f, -0.5546100667f, 0, -0.2098319339f, 0.85037073f, 0.4825351604f, 0, -0.4592603758f, 0.6598504336f, -0.5947077538f, 0, 0.8715945488f, 0.09616365406f, -0.4807031248f, 0, -0.6776666319f, 0.7118504878f, -0.1844907016f, 0, 0.7044377633f, 0.312427597f, 0.637304036f, 0, -0.7052318886f, -0.2401093292f, -0.6670798253f, 0, 0.081921007f, -0.7207336136f, -0.6883545647f, 0, -0.6993680906f, -0.5875763221f, -0.4069869034f, 0, -0.1281454481f, 0.6419895885f, 0.7559286424f, 0, -0.6337388239f, -0.6785471501f, -0.3714146849f, 0, 0.5565051903f, -0.2168887573f, -0.8020356851f, 0, -0.5791554484f, 0.7244372011f, -0.3738578718f, 0, 0.1175779076f, -0.7096451073f, 0.6946792478f, 0, -0.6134619607f, 0.1323631078f, 0.7785527795f, 0, 0.6984635305f, -0.02980516237f, -0.715024719f, 0, 0.8318082963f, -0.3930171956f, 0.3919597455f, 0, 0.1469576422f, 0.05541651717f, -0.9875892167f, 0, 0.708868575f, -0.2690503865f, 0.6520101478f, 0, 0.2726053183f, 0.67369766f, -0.68688995f, 0, -0.6591295371f, 0.3035458599f, -0.6880466294f, 0, 0.4815131379f, -0.7528270071f, 0.4487723203f, 0, 0.9430009463f, 0.1675647412f, -0.2875261255f, 0, 0.434802957f, 0.7695304522f, -0.4677277752f, 0, 0.3931996188f, 0.594473625f, 0.7014236729f, 0, 0.7254336655f, -0.603925654f, 0.3301814672f, 0, 0.7590235227f, -0.6506083235f, 0.02433313207f, 0, -0.8552768592f, -0.3430042733f, 0.3883935666f, 0, -0.6139746835f, 0.6981725247f, 0.3682257648f, 0, -0.7465905486f, -0.5752009504f, 0.3342849376f, 0, 0.5730065677f, 0.810555537f, -0.1210916791f, 0, -0.9225877367f, -0.3475211012f, -0.167514036f, 0, -0.7105816789f, -0.4719692027f, -0.5218416899f, 0, -0.08564609717f, 0.3583001386f, 0.929669703f, 0, -0.8279697606f, -0.2043157126f, 0.5222271202f, 0, 0.427944023f, 0.278165994f, 0.8599346446f, 0, 0.5399079671f, -0.7857120652f, -0.3019204161f, 0, 0.5678404253f, -0.5495413974f, -0.6128307303f, 0, -0.9896071041f, 0.1365639107f, -0.04503418428f, 0, -0.6154342638f, -0.6440875597f, 0.4543037336f, 0, 0.1074204368f, -0.7946340692f, 0.5975094525f, 0, -0.3595449969f, -0.8885529948f, 0.28495784f, 0, -0.2180405296f, 0.1529888965f, 0.9638738118f, 0, -0.7277432317f, -0.6164050508f, -0.3007234646f, 0, 0.7249729114f, -0.00669719484f, 0.6887448187f, 0, -0.5553659455f, -0.5336586252f, 0.6377908264f, 0, 0.5137558015f, 0.7976208196f, -0.3160000073f, 0, -0.3794024848f, 0.9245608561f, -0.03522751494f, 0, 0.8229248658f, 0.2745365933f, -0.4974176556f, 0, -0.5404114394f, 0.6091141441f, 0.5804613989f, 0, 0.8036581901f, -0.2703029469f, 0.5301601931f, 0, 0.6044318879f, 0.6832968393f, 0.4095943388f, 0, 0.06389988817f, 0.9658208605f, -0.2512108074f, 0, 0.1087113286f, 0.7402471173f, -0.6634877936f, 0, -0.713427712f, -0.6926784018f, 0.1059128479f, 0, 0.6458897819f, -0.5724548511f, -0.5050958653f, 0, -0.6553931414f, 0.7381471625f, 0.159995615f, 0, 0.3910961323f, 0.9188871375f, -0.05186755998f, 0, -0.4879022471f, -0.5904376907f, 0.6429111375f, 0, 0.6014790094f, 0.7707441366f, -0.2101820095f, 0, -0.5677173047f, 0.7511360995f, 0.3368851762f, 0, 0.7858573506f, 0.226674665f, 0.5753666838f, 0, -0.4520345543f, -0.604222686f, -0.6561857263f, 0, 0.002272116345f, 0.4132844051f, -0.9105991643f, 0, -0.5815751419f, -0.5162925989f, 0.6286591339f, 0, -0.03703704785f, 0.8273785755f, 0.5604221175f, 0, -0.5119692504f, 0.7953543429f, -0.3244980058f, 0, -0.2682417366f, -0.9572290247f, -0.1084387619f, 0, -0.2322482736f, -0.9679131102f, -0.09594243324f, 0, 0.3554328906f, -0.8881505545f, 0.2913006227f, 0, 0.7346520519f, -0.4371373164f, 0.5188422971f, 0, 0.9985120116f, 0.04659011161f, -0.02833944577f, 0, -0.3727687496f, -0.9082481361f, 0.1900757285f, 0, 0.91737377f, -0.3483642108f, 0.1925298489f, 0, 0.2714911074f, 0.4147529736f, -0.8684886582f, 0, 0.5131763485f, -0.7116334161f, 0.4798207128f, 0, -0.8737353606f, 0.18886992f, -0.4482350644f, 0, 0.8460043821f, -0.3725217914f, 0.3814499973f, 0, 0.8978727456f, -0.1780209141f, -0.4026575304f, 0, 0.2178065647f, -0.9698322841f, -0.1094789531f, 0, -0.1518031304f, -0.7788918132f, -0.6085091231f, 0, -0.2600384876f, -0.4755398075f, -0.8403819825f, 0, 0.572313509f, -0.7474340931f, -0.3373418503f, 0, -0.7174141009f, 0.1699017182f, -0.6756111411f, 0, -0.684180784f, 0.02145707593f, -0.7289967412f, 0, -0.2007447902f, 0.06555605789f, -0.9774476623f, 0, -0.1148803697f, -0.8044887315f, 0.5827524187f, 0, -0.7870349638f, 0.03447489231f, 0.6159443543f, 0, -0.2015596421f, 0.6859872284f, 0.6991389226f, 0, -0.08581082512f, -0.10920836f, -0.9903080513f, 0, 0.5532693395f, 0.7325250401f, -0.396610771f, 0, -0.1842489331f, -0.9777375055f, -0.1004076743f, 0, 0.0775473789f, -0.9111505856f, 0.4047110257f, 0, 0.1399838409f, 0.7601631212f, -0.6344734459f, 0, 0.4484419361f, -0.845289248f, 0.2904925424f, 0}; // Utilities static inline float _fnlFastMin(float x, float y) { return x < y ? x : y; } static inline float _fnlFastMax(float x, float y) { return x > y ? x : y; } static inline float _fnlFastAbs(float f) { return f < 0 ? -f : f; } static inline float _fnlCasti32Tof32(int i) { union { float f; int32_t i; } u; u.i = i; return u.f; } static inline int _fnlCastf32Toi32(float f) { union { float f; int32_t i; } u; u.f = f; return u.i; } static inline float _fnlInvSqrt(float a) { float xhalf = 0.5f * a; a = _fnlCasti32Tof32(0x5f3759df - (_fnlCastf32Toi32(a) >> 1)); a = a * (1.5f - xhalf * a * a); return a; } // NOTE: If your language does not support this method (seen above), then simply use the native sqrt function. static inline float _fnlFastSqrt(float a) { return a * _fnlInvSqrt(a); } static inline int _fnlFastFloor(FNLfloat f) { return (f >= 0 ? (int)f : (int)f - 1); } static inline int _fnlFastRound(FNLfloat f) { return (f >= 0) ? (int)(f + 0.5f) : (int)(f - 0.5f); } static inline float _fnlLerp(float a, float b, float t) { return a + t * (b - a); } static inline float _fnlInterpHermite(float t) { return t * t * (3 - 2 * t); } static inline float _fnlInterpQuintic(float t) { return t * t * t * (t * (t * 6 - 15) + 10); } static inline float _fnlCubicLerp(float a, float b, float c, float d, float t) { float p = (d - c) - (a - b); return t * t * t * p + t * t * ((a - b) - p) + t * (c - a) + b; } static inline float _fnlPingPong(float t) { t -= (int)(t * 0.5f) * 2; return t < 1 ? t : 2 - t; } static float _fnlCalculateFractalBounding(fnl_state *state) { float gain = _fnlFastAbs(state->gain); float amp = gain; float ampFractal = 1.0f; for (int i = 1; i < state->octaves; i++) { ampFractal += amp; amp *= gain; } return 1.0f / ampFractal; } // Hashing static const int PRIME_X = 501125321; static const int PRIME_Y = 1136930381; static const int PRIME_Z = 1720413743; static inline int _fnlHash2D(int seed, int xPrimed, int yPrimed) { int hash = seed ^ xPrimed ^ yPrimed; hash *= 0x27d4eb2d; return hash; } static inline int _fnlHash3D(int seed, int xPrimed, int yPrimed, int zPrimed) { int hash = seed ^ xPrimed ^ yPrimed ^ zPrimed; hash *= 0x27d4eb2d; return hash; } static inline float _fnlValCoord2D(int seed, int xPrimed, int yPrimed) { int hash = _fnlHash2D(seed, xPrimed, yPrimed); hash *= hash; hash ^= hash << 19; return hash * (1 / 2147483648.0f); } static inline float _fnlValCoord3D(int seed, int xPrimed, int yPrimed, int zPrimed) { int hash = _fnlHash3D(seed, xPrimed, yPrimed, zPrimed); hash *= hash; hash ^= hash << 19; return hash * (1 / 2147483648.0f); } static inline float _fnlGradCoord2D(int seed, int xPrimed, int yPrimed, float xd, float yd) { int hash = _fnlHash2D(seed, xPrimed, yPrimed); hash ^= hash >> 15; hash &= 127 << 1; return xd * GRADIENTS_2D[hash] + yd * GRADIENTS_2D[hash | 1]; } static inline float _fnlGradCoord3D(int seed, int xPrimed, int yPrimed, int zPrimed, float xd, float yd, float zd) { int hash = _fnlHash3D(seed, xPrimed, yPrimed, zPrimed); hash ^= hash >> 15; hash &= 63 << 2; return xd * GRADIENTS_3D[hash] + yd * GRADIENTS_3D[hash | 1] + zd * GRADIENTS_3D[hash | 2]; } static inline void _fnlGradCoordOut2D(int seed, int xPrimed, int yPrimed, float *xo, float *yo) { int hash = _fnlHash2D(seed, xPrimed, yPrimed) & (255 << 1); *xo = RAND_VECS_2D[hash]; *yo = RAND_VECS_2D[hash | 1]; } static inline void _fnlGradCoordOut3D(int seed, int xPrimed, int yPrimed, int zPrimed, float *xo, float *yo, float *zo) { int hash = _fnlHash3D(seed, xPrimed, yPrimed, zPrimed) & (255 << 2); *xo = RAND_VECS_3D[hash]; *yo = RAND_VECS_3D[hash | 1]; *zo = RAND_VECS_3D[hash | 2]; } static inline void _fnlGradCoordDual2D(int seed, int xPrimed, int yPrimed, float xd, float yd, float *xo, float *yo) { int hash = _fnlHash2D(seed, xPrimed, yPrimed); int index1 = hash & (127 << 1); int index2 = (hash >> 7) & (255 << 1); float xg = GRADIENTS_2D[index1]; float yg = GRADIENTS_2D[index1 | 1]; float value = xd * xg + yd * yg; float xgo = RAND_VECS_2D[index2]; float ygo = RAND_VECS_2D[index2 | 1]; *xo = value * xgo; *yo = value * ygo; } static inline void _fnlGradCoordDual3D(int seed, int xPrimed, int yPrimed, int zPrimed, float xd, float yd, float zd, float *xo, float *yo, float *zo) { int hash = _fnlHash3D(seed, xPrimed, yPrimed, zPrimed); int index1 = hash & (63 << 2); int index2 = (hash >> 6) & (255 << 2); float xg = GRADIENTS_3D[index1]; float yg = GRADIENTS_3D[index1 | 1]; float zg = GRADIENTS_3D[index1 | 2]; float value = xd * xg + yd * yg + zd * zg; float xgo = RAND_VECS_3D[index2]; float ygo = RAND_VECS_3D[index2 | 1]; float zgo = RAND_VECS_3D[index2 | 2]; *xo = value * xgo; *yo = value * ygo; *zo = value * zgo; } // Generic Noise Gen static float _fnlSingleSimplex2D(int seed, FNLfloat x, FNLfloat y); static float _fnlSingleOpenSimplex23D(int seed, FNLfloat x, FNLfloat y, FNLfloat z); static float _fnlSingleOpenSimplex2S2D(int seed, FNLfloat x, FNLfloat y); static float _fnlSingleOpenSimplex2S3D(int seed, FNLfloat x, FNLfloat y, FNLfloat z); static float _fnlSingleCellular2D(fnl_state *state, int seed, FNLfloat x, FNLfloat y); static float _fnlSingleCellular3D(fnl_state *state, int seed, FNLfloat x, FNLfloat y, FNLfloat z); static float _fnlSinglePerlin2D(int seed, FNLfloat x, FNLfloat y); static float _fnlSinglePerlin3D(int seed, FNLfloat x, FNLfloat y, FNLfloat z); static float _fnlSingleValueCubic2D(int seed, FNLfloat x, FNLfloat y); static float _fnlSingleValueCubic3D(int seed, FNLfloat x, FNLfloat y, FNLfloat z); static float _fnlSingleValue2D(int seed, FNLfloat x, FNLfloat y); static float _fnlSingleValue3D(int seed, FNLfloat x, FNLfloat y, FNLfloat z); static float _fnlGenNoiseSingle2D(fnl_state *state, int seed, FNLfloat x, FNLfloat y) { switch (state->noise_type) { case FNL_NOISE_OPENSIMPLEX2: return _fnlSingleSimplex2D(seed, x, y); case FNL_NOISE_OPENSIMPLEX2S: return _fnlSingleOpenSimplex2S2D(seed, x, y); case FNL_NOISE_CELLULAR: return _fnlSingleCellular2D(state, seed, x, y); case FNL_NOISE_PERLIN: return _fnlSinglePerlin2D(seed, x, y); case FNL_NOISE_VALUE_CUBIC: return _fnlSingleValueCubic2D(seed, x, y); case FNL_NOISE_VALUE: return _fnlSingleValue2D(seed, x, y); default: return 0; } } static float _fnlGenNoiseSingle3D(fnl_state *state, int seed, FNLfloat x, FNLfloat y, FNLfloat z) { switch (state->noise_type) { case FNL_NOISE_OPENSIMPLEX2: return _fnlSingleOpenSimplex23D(seed, x, y, z); case FNL_NOISE_OPENSIMPLEX2S: return _fnlSingleOpenSimplex2S3D(seed, x, y, z); case FNL_NOISE_CELLULAR: return _fnlSingleCellular3D(state, seed, x, y, z); case FNL_NOISE_PERLIN: return _fnlSinglePerlin3D(seed, x, y, z); case FNL_NOISE_VALUE_CUBIC: return _fnlSingleValueCubic3D(seed, x, y, z); case FNL_NOISE_VALUE: return _fnlSingleValue3D(seed, x, y, z); default: return 0; } } // Noise Coordinate Transforms (frequency, and possible skew or rotation) static void _fnlTransformNoiseCoordinate2D(fnl_state *state, FNLfloat *x, FNLfloat *y) { *x *= state->frequency; *y *= state->frequency; switch (state->noise_type) { case FNL_NOISE_OPENSIMPLEX2: case FNL_NOISE_OPENSIMPLEX2S: { const FNLfloat SQRT3 = (FNLfloat)1.7320508075688772935274463415059; const FNLfloat F2 = 0.5f * (SQRT3 - 1); FNLfloat t = (*x + *y) * F2; *x += t; *y += t; } break; default: break; } } static void _fnlTransformNoiseCoordinate3D(fnl_state *state, FNLfloat *x, FNLfloat *y, FNLfloat *z) { *x *= state->frequency; *y *= state->frequency; *z *= state->frequency; switch (state->rotation_type_3d) { case FNL_ROTATION_IMPROVE_XY_PLANES: { FNLfloat xy = *x + *y; FNLfloat s2 = xy * -(FNLfloat)0.211324865405187; *z *= (FNLfloat)0.577350269189626; *x += s2 - *z; *y = *y + s2 - *z; *z += xy * (FNLfloat)0.577350269189626; } break; case FNL_ROTATION_IMPROVE_XZ_PLANES: { FNLfloat xz = *x + *z; FNLfloat s2 = xz * -(FNLfloat)0.211324865405187; *y *= (FNLfloat)0.577350269189626; *x += s2 - *y; *z += s2 - *y; *y += xz * (FNLfloat)0.577350269189626; } break; default: switch (state->noise_type) { case FNL_NOISE_OPENSIMPLEX2: case FNL_NOISE_OPENSIMPLEX2S: { const FNLfloat R3 = (FNLfloat)(2.0 / 3.0); FNLfloat r = (*x + *y + *z) * R3; // Rotation, not skew *x = r - *x; *y = r - *y; *z = r - *z; } break; default: break; } } } // Domain Warp Coordinate Transforms static void _fnlTransformDomainWarpCoordinate2D(fnl_state *state, FNLfloat *x, FNLfloat *y) { switch (state->domain_warp_type) { case FNL_DOMAIN_WARP_OPENSIMPLEX2: case FNL_DOMAIN_WARP_OPENSIMPLEX2_REDUCED: { const FNLfloat SQRT3 = (FNLfloat)1.7320508075688772935274463415059; const FNLfloat F2 = 0.5f * (SQRT3 - 1); FNLfloat t = (*x + *y) * F2; *x += t; *y += t; } break; default: break; } } static void _fnlTransformDomainWarpCoordinate3D(fnl_state *state, FNLfloat *x, FNLfloat *y, FNLfloat *z) { switch (state->rotation_type_3d) { case FNL_ROTATION_IMPROVE_XY_PLANES: { FNLfloat xy = *x + *y; FNLfloat s2 = xy * -(FNLfloat)0.211324865405187; *z *= (FNLfloat)0.577350269189626; *x += s2 - *z; *y = *y + s2 - *z; *z += xy * (FNLfloat)0.577350269189626; } break; case FNL_ROTATION_IMPROVE_XZ_PLANES: { FNLfloat xz = *x + *z; FNLfloat s2 = xz * -(FNLfloat)0.211324865405187; *y *= (FNLfloat)0.577350269189626; *x += s2 - *y; *z += s2 - *y; *y += xz * (FNLfloat)0.577350269189626; } break; default: switch (state->domain_warp_type) { case FNL_DOMAIN_WARP_OPENSIMPLEX2: case FNL_DOMAIN_WARP_OPENSIMPLEX2_REDUCED: { const FNLfloat R3 = (FNLfloat)(2.0 / 3.0); FNLfloat r = (*x + *y + *z) * R3; // Rotation, not skew *x = r - *x; *y = r - *y; *z = r - *z; } break; default: break; } } } // Fractal FBm static float _fnlGenFractalFBM2D(fnl_state *state, FNLfloat x, FNLfloat y) { int seed = state->seed; float sum = 0; float amp = _fnlCalculateFractalBounding(state); for (int i = 0; i < state->octaves; i++) { float noise = _fnlGenNoiseSingle2D(state, seed++, x, y); sum += noise * amp; amp *= _fnlLerp(1.0f, _fnlFastMin(noise + 1, 2) * 0.5f, state->weighted_strength); x *= state->lacunarity; y *= state->lacunarity; amp *= state->gain; } return sum; } static float _fnlGenFractalFBM3D(fnl_state *state, FNLfloat x, FNLfloat y, FNLfloat z) { int seed = state->seed; float sum = 0; float amp = _fnlCalculateFractalBounding(state); for (int i = 0; i < state->octaves; i++) { float noise = _fnlGenNoiseSingle3D(state, seed++, x, y, z); sum += noise * amp; amp *= _fnlLerp(1.0f, (noise + 1) * 0.5f, state->weighted_strength); x *= state->lacunarity; y *= state->lacunarity; z *= state->lacunarity; amp *= state->gain; } return sum; } // Fractal Ridged static float _fnlGenFractalRidged2D(fnl_state *state, FNLfloat x, FNLfloat y) { int seed = state->seed; float sum = 0; float amp = _fnlCalculateFractalBounding(state); for (int i = 0; i < state->octaves; i++) { float noise = _fnlFastAbs(_fnlGenNoiseSingle2D(state, seed++, x, y)); sum += (noise * -2 + 1) * amp; amp *= _fnlLerp(1.0f, 1 - noise, state->weighted_strength); x *= state->lacunarity; y *= state->lacunarity; amp *= state->gain; } return sum; } static float _fnlGenFractalRidged3D(fnl_state *state, FNLfloat x, FNLfloat y, FNLfloat z) { int seed = state->seed; float sum = 0; float amp = _fnlCalculateFractalBounding(state); for (int i = 0; i < state->octaves; i++) { float noise = _fnlFastAbs(_fnlGenNoiseSingle3D(state, seed++, x, y, z)); sum += (noise * -2 + 1) * amp; amp *= _fnlLerp(1.0f, 1 - noise, state->weighted_strength); x *= state->lacunarity; y *= state->lacunarity; z *= state->lacunarity; amp *= state->gain; } return sum; } // Fractal PingPong static float _fnlGenFractalPingPong2D(fnl_state *state, FNLfloat x, FNLfloat y) { int seed = state->seed; float sum = 0; float amp = _fnlCalculateFractalBounding(state); for (int i = 0; i < state->octaves; i++) { float noise = _fnlPingPong((_fnlGenNoiseSingle2D(state, seed++, x, y) + 1) * state->ping_pong_strength); sum += (noise - 0.5f) * 2 * amp; amp *= _fnlLerp(1.0f, noise, state->weighted_strength); x *= state->lacunarity; y *= state->lacunarity; amp *= state->gain; } return sum; } static float _fnlGenFractalPingPong3D(fnl_state *state, FNLfloat x, FNLfloat y, FNLfloat z) { int seed = state->seed; float sum = 0; float amp = _fnlCalculateFractalBounding(state); for (int i = 0; i < state->octaves; i++) { float noise = _fnlPingPong((_fnlGenNoiseSingle3D(state, seed++, x, y, z) + 1) * state->ping_pong_strength); sum += (noise - 0.5f) * 2 * amp; amp *= _fnlLerp(1.0f, noise, state->weighted_strength); x *= state->lacunarity; y *= state->lacunarity; z *= state->lacunarity; amp *= state->gain; } return sum; } // Simplex/OpenSimplex2 Noise static float _fnlSingleSimplex2D(int seed, FNLfloat x, FNLfloat y) { // 2D OpenSimplex2 case uses the same algorithm as ordinary Simplex. const float SQRT3 = 1.7320508075688772935274463415059f; const float G2 = (3 - SQRT3) / 6; /* * --- Skew moved to TransformNoiseCoordinate method --- * const FNLfloat F2 = 0.5f * (SQRT3 - 1); * FNLfloat s = (x + y) * F2; * x += s; y += s; */ int i = _fnlFastFloor(x); int j = _fnlFastFloor(y); float xi = (float)(x - i); float yi = (float)(y - j); float t = (xi + yi) * G2; float x0 = (float)(xi - t); float y0 = (float)(yi - t); i *= PRIME_X; j *= PRIME_Y; float n0, n1, n2; float a = 0.5f - x0 * x0 - y0 * y0; if (a <= 0) n0 = 0; else { n0 = (a * a) * (a * a) * _fnlGradCoord2D(seed, i, j, x0, y0); } float c = (float)(2 * (1 - 2 * G2) * (1 / G2 - 2)) * t + ((float)(-2 * (1 - 2 * G2) * (1 - 2 * G2)) + a); if (c <= 0) n2 = 0; else { float x2 = x0 + (2 * (float)G2 - 1); float y2 = y0 + (2 * (float)G2 - 1); n2 = (c * c) * (c * c) * _fnlGradCoord2D(seed, i + PRIME_X, j + PRIME_Y, x2, y2); } if (y0 > x0) { float x1 = x0 + (float)G2; float y1 = y0 + ((float)G2 - 1); float b = 0.5f - x1 * x1 - y1 * y1; if (b <= 0) n1 = 0; else { n1 = (b * b) * (b * b) * _fnlGradCoord2D(seed, i, j + PRIME_Y, x1, y1); } } else { float x1 = x0 + ((float)G2 - 1); float y1 = y0 + (float)G2; float b = 0.5f - x1 * x1 - y1 * y1; if (b <= 0) n1 = 0; else { n1 = (b * b) * (b * b) * _fnlGradCoord2D(seed, i + PRIME_X, j, x1, y1); } } return (n0 + n1 + n2) * 99.83685446303647f; } static float _fnlSingleOpenSimplex23D(int seed, FNLfloat x, FNLfloat y, FNLfloat z) { // 3D OpenSimplex2 case uses two offset rotated cube grids. /* * --- Rotation moved to TransformNoiseCoordinate method --- * const FNLfloat R3 = (FNLfloat)(2.0 / 3.0); * FNLfloat r = (x + y + z) * R3; // Rotation, not skew * x = r - x; y = r - y; z = r - z; */ int i = _fnlFastRound(x); int j = _fnlFastRound(y); int k = _fnlFastRound(z); float x0 = (float)(x - i); float y0 = (float)(y - j); float z0 = (float)(z - k); int xNSign = (int)(-1.0f - x0) | 1; int yNSign = (int)(-1.0f - y0) | 1; int zNSign = (int)(-1.0f - z0) | 1; float ax0 = xNSign * -x0; float ay0 = yNSign * -y0; float az0 = zNSign * -z0; i *= PRIME_X; j *= PRIME_Y; k *= PRIME_Z; float value = 0; float a = (0.6f - x0 * x0) - (y0 * y0 + z0 * z0); for (int l = 0;; l++) { if (a > 0) { value += (a * a) * (a * a) * _fnlGradCoord3D(seed, i, j, k, x0, y0, z0); } float b = a + 1; int i1 = i; int j1 = j; int k1 = k; float x1 = x0; float y1 = y0; float z1 = z0; if (ax0 >= ay0 && ax0 >= az0) { x1 += xNSign; b -= xNSign * 2 * x1; i1 -= xNSign * PRIME_X; } else if (ay0 > ax0 && ay0 >= az0) { y1 += yNSign; b -= yNSign * 2 * y1; j1 -= yNSign * PRIME_Y; } else { z1 += zNSign; b -= zNSign * 2 * z1; k1 -= zNSign * PRIME_Z; } if (b > 0) { value += (b * b) * (b * b) * _fnlGradCoord3D(seed, i1, j1, k1, x1, y1, z1); } if (l == 1) break; ax0 = 0.5f - ax0; ay0 = 0.5f - ay0; az0 = 0.5f - az0; x0 = xNSign * ax0; y0 = yNSign * ay0; z0 = zNSign * az0; a += (0.75f - ax0) - (ay0 + az0); i += (xNSign >> 1) & PRIME_X; j += (yNSign >> 1) & PRIME_Y; k += (zNSign >> 1) & PRIME_Z; xNSign = -xNSign; yNSign = -yNSign; zNSign = -zNSign; seed = ~seed; } return value * 32.69428253173828125f; } // OpenSimplex2S Noise static float _fnlSingleOpenSimplex2S2D(int seed, FNLfloat x, FNLfloat y) { // 2D OpenSimplex2S case is a modified 2D simplex noise. const FNLfloat SQRT3 = (FNLfloat)1.7320508075688772935274463415059; const FNLfloat G2 = (3 - SQRT3) / 6; /* * --- Skew moved to TransformNoiseCoordinate method --- * const FNLfloat F2 = 0.5f * (SQRT3 - 1); * FNLfloat s = (x + y) * F2; * x += s; y += s; */ int i = _fnlFastFloor(x); int j = _fnlFastFloor(y); float xi = (float)(x - i); float yi = (float)(y - j); i *= PRIME_X; j *= PRIME_Y; int i1 = i + PRIME_X; int j1 = j + PRIME_Y; float t = (xi + yi) * (float)G2; float x0 = xi - t; float y0 = yi - t; float a0 = (2.0f / 3.0f) - x0 * x0 - y0 * y0; float value = (a0 * a0) * (a0 * a0) * _fnlGradCoord2D(seed, i, j, x0, y0); float a1 = (float)(2 * (1 - 2 * G2) * (1 / G2 - 2)) * t + ((float)(-2 * (1 - 2 * G2) * (1 - 2 * G2)) + a0); float x1 = x0 - (float)(1 - 2 * G2); float y1 = y0 - (float)(1 - 2 * G2); value += (a1 * a1) * (a1 * a1) * _fnlGradCoord2D(seed, i1, j1, x1, y1); // Nested conditionals were faster than compact bit logic/arithmetic. float xmyi = xi - yi; if (t > G2) { if (xi + xmyi > 1) { float x2 = x0 + (float)(3 * G2 - 2); float y2 = y0 + (float)(3 * G2 - 1); float a2 = (2.0f / 3.0f) - x2 * x2 - y2 * y2; if (a2 > 0) { value += (a2 * a2) * (a2 * a2) * _fnlGradCoord2D(seed, i + (PRIME_X << 1), j + PRIME_Y, x2, y2); } } else { float x2 = x0 + (float)G2; float y2 = y0 + (float)(G2 - 1); float a2 = (2.0f / 3.0f) - x2 * x2 - y2 * y2; if (a2 > 0) { value += (a2 * a2) * (a2 * a2) * _fnlGradCoord2D(seed, i, j + PRIME_Y, x2, y2); } } if (yi - xmyi > 1) { float x3 = x0 + (float)(3 * G2 - 1); float y3 = y0 + (float)(3 * G2 - 2); float a3 = (2.0f / 3.0f) - x3 * x3 - y3 * y3; if (a3 > 0) { value += (a3 * a3) * (a3 * a3) * _fnlGradCoord2D(seed, i + PRIME_X, j + (PRIME_Y << 1), x3, y3); } } else { float x3 = x0 + (float)(G2 - 1); float y3 = y0 + (float)G2; float a3 = (2.0f / 3.0f) - x3 * x3 - y3 * y3; if (a3 > 0) { value += (a3 * a3) * (a3 * a3) * _fnlGradCoord2D(seed, i + PRIME_X, j, x3, y3); } } } else { if (xi + xmyi < 0) { float x2 = x0 + (float)(1 - G2); float y2 = y0 - (float)G2; float a2 = (2.0f / 3.0f) - x2 * x2 - y2 * y2; if (a2 > 0) { value += (a2 * a2) * (a2 * a2) * _fnlGradCoord2D(seed, i - PRIME_X, j, x2, y2); } } else { float x2 = x0 + (float)(G2 - 1); float y2 = y0 + (float)G2; float a2 = (2.0f / 3.0f) - x2 * x2 - y2 * y2; if (a2 > 0) { value += (a2 * a2) * (a2 * a2) * _fnlGradCoord2D(seed, i + PRIME_X, j, x2, y2); } } if (yi < xmyi) { float x2 = x0 - (float)G2; float y2 = y0 - (float)(G2 - 1); float a2 = (2.0f / 3.0f) - x2 * x2 - y2 * y2; if (a2 > 0) { value += (a2 * a2) * (a2 * a2) * _fnlGradCoord2D(seed, i, j - PRIME_Y, x2, y2); } } else { float x2 = x0 + (float)G2; float y2 = y0 + (float)(G2 - 1); float a2 = (2.0f / 3.0f) - x2 * x2 - y2 * y2; if (a2 > 0) { value += (a2 * a2) * (a2 * a2) * _fnlGradCoord2D(seed, i, j + PRIME_Y, x2, y2); } } } return value * 18.24196194486065f; } static float _fnlSingleOpenSimplex2S3D(int seed, FNLfloat x, FNLfloat y, FNLfloat z) { // 3D OpenSimplex2S case uses two offset rotated cube grids. /* * --- Rotation moved to TransformNoiseCoordinate method --- * const FNLfloat R3 = (FNLfloat)(2.0 / 3.0); * FNLfloat r = (x + y + z) * R3; // Rotation, not skew * x = r - x; y = r - y; z = r - z; */ int i = _fnlFastFloor(x); int j = _fnlFastFloor(y); int k = _fnlFastFloor(z); float xi = (float)(x - i); float yi = (float)(y - j); float zi = (float)(z - k); i *= PRIME_X; j *= PRIME_Y; k *= PRIME_Z; int seed2 = seed + 1293373; int xNMask = (int)(-0.5f - xi); int yNMask = (int)(-0.5f - yi); int zNMask = (int)(-0.5f - zi); float x0 = xi + xNMask; float y0 = yi + yNMask; float z0 = zi + zNMask; float a0 = 0.75f - x0 * x0 - y0 * y0 - z0 * z0; float value = (a0 * a0) * (a0 * a0) * _fnlGradCoord3D(seed, i + (xNMask & PRIME_X), j + (yNMask & PRIME_Y), k + (zNMask & PRIME_Z), x0, y0, z0); float x1 = xi - 0.5f; float y1 = yi - 0.5f; float z1 = zi - 0.5f; float a1 = 0.75f - x1 * x1 - y1 * y1 - z1 * z1; value += (a1 * a1) * (a1 * a1) * _fnlGradCoord3D(seed2, i + PRIME_X, j + PRIME_Y, k + PRIME_Z, x1, y1, z1); float xAFlipMask0 = ((xNMask | 1) << 1) * x1; float yAFlipMask0 = ((yNMask | 1) << 1) * y1; float zAFlipMask0 = ((zNMask | 1) << 1) * z1; float xAFlipMask1 = (-2 - (xNMask << 2)) * x1 - 1.0f; float yAFlipMask1 = (-2 - (yNMask << 2)) * y1 - 1.0f; float zAFlipMask1 = (-2 - (zNMask << 2)) * z1 - 1.0f; bool skip5 = false; float a2 = xAFlipMask0 + a0; if (a2 > 0) { float x2 = x0 - (xNMask | 1); float y2 = y0; float z2 = z0; value += (a2 * a2) * (a2 * a2) * _fnlGradCoord3D(seed, i + (~xNMask & PRIME_X), j + (yNMask & PRIME_Y), k + (zNMask & PRIME_Z), x2, y2, z2); } else { float a3 = yAFlipMask0 + zAFlipMask0 + a0; if (a3 > 0) { float x3 = x0; float y3 = y0 - (yNMask | 1); float z3 = z0 - (zNMask | 1); value += (a3 * a3) * (a3 * a3) * _fnlGradCoord3D(seed, i + (xNMask & PRIME_X), j + (~yNMask & PRIME_Y), k + (~zNMask & PRIME_Z), x3, y3, z3); } float a4 = xAFlipMask1 + a1; if (a4 > 0) { float x4 = (xNMask | 1) + x1; float y4 = y1; float z4 = z1; value += (a4 * a4) * (a4 * a4) * _fnlGradCoord3D(seed2, i + (xNMask & (PRIME_X * 2)), j + PRIME_Y, k + PRIME_Z, x4, y4, z4); skip5 = true; } } bool skip9 = false; float a6 = yAFlipMask0 + a0; if (a6 > 0) { float x6 = x0; float y6 = y0 - (yNMask | 1); float z6 = z0; value += (a6 * a6) * (a6 * a6) * _fnlGradCoord3D(seed, i + (xNMask & PRIME_X), j + (~yNMask & PRIME_Y), k + (zNMask & PRIME_Z), x6, y6, z6); } else { float a7 = xAFlipMask0 + zAFlipMask0 + a0; if (a7 > 0) { float x7 = x0 - (xNMask | 1); float y7 = y0; float z7 = z0 - (zNMask | 1); value += (a7 * a7) * (a7 * a7) * _fnlGradCoord3D(seed, i + (~xNMask & PRIME_X), j + (yNMask & PRIME_Y), k + (~zNMask & PRIME_Z), x7, y7, z7); } float a8 = yAFlipMask1 + a1; if (a8 > 0) { float x8 = x1; float y8 = (yNMask | 1) + y1; float z8 = z1; value += (a8 * a8) * (a8 * a8) * _fnlGradCoord3D(seed2, i + PRIME_X, j + (yNMask & (PRIME_Y << 1)), k + PRIME_Z, x8, y8, z8); skip9 = true; } } bool skipD = false; float aA = zAFlipMask0 + a0; if (aA > 0) { float xA = x0; float yA = y0; float zA = z0 - (zNMask | 1); value += (aA * aA) * (aA * aA) * _fnlGradCoord3D(seed, i + (xNMask & PRIME_X), j + (yNMask & PRIME_Y), k + (~zNMask & PRIME_Z), xA, yA, zA); } else { float aB = xAFlipMask0 + yAFlipMask0 + a0; if (aB > 0) { float xB = x0 - (xNMask | 1); float yB = y0 - (yNMask | 1); float zB = z0; value += (aB * aB) * (aB * aB) * _fnlGradCoord3D(seed, i + (~xNMask & PRIME_X), j + (~yNMask & PRIME_Y), k + (zNMask & PRIME_Z), xB, yB, zB); } float aC = zAFlipMask1 + a1; if (aC > 0) { float xC = x1; float yC = y1; float zC = (zNMask | 1) + z1; value += (aC * aC) * (aC * aC) * _fnlGradCoord3D(seed2, i + PRIME_X, j + PRIME_Y, k + (zNMask & (PRIME_Z << 1)), xC, yC, zC); skipD = true; } } if (!skip5) { float a5 = yAFlipMask1 + zAFlipMask1 + a1; if (a5 > 0) { float x5 = x1; float y5 = (yNMask | 1) + y1; float z5 = (zNMask | 1) + z1; value += (a5 * a5) * (a5 * a5) * _fnlGradCoord3D(seed2, i + PRIME_X, j + (yNMask & (PRIME_Y << 1)), k + (zNMask & (PRIME_Z << 1)), x5, y5, z5); } } if (!skip9) { float a9 = xAFlipMask1 + zAFlipMask1 + a1; if (a9 > 0) { float x9 = (xNMask | 1) + x1; float y9 = y1; float z9 = (zNMask | 1) + z1; value += (a9 * a9) * (a9 * a9) * _fnlGradCoord3D(seed2, i + (xNMask & (PRIME_X * 2)), j + PRIME_Y, k + (zNMask & (PRIME_Z << 1)), x9, y9, z9); } } if (!skipD) { float aD = xAFlipMask1 + yAFlipMask1 + a1; if (aD > 0) { float xD = (xNMask | 1) + x1; float yD = (yNMask | 1) + y1; float zD = z1; value += (aD * aD) * (aD * aD) * _fnlGradCoord3D(seed2, i + (xNMask & (PRIME_X << 1)), j + (yNMask & (PRIME_Y << 1)), k + PRIME_Z, xD, yD, zD); } } return value * 9.046026385208288f; } // Cellular Noise static float _fnlSingleCellular2D(fnl_state *state, int seed, FNLfloat x, FNLfloat y) { int xr = _fnlFastRound(x); int yr = _fnlFastRound(y); float distance0 = FLT_MAX; float distance1 = FLT_MAX; int closestHash = 0; float cellularJitter = 0.5f * state->cellular_jitter_mod; int xPrimed = (xr - 1) * PRIME_X; int yPrimedBase = (yr - 1) * PRIME_Y; switch (state->cellular_distance_func) { default: case FNL_CELLULAR_DISTANCE_EUCLIDEAN: case FNL_CELLULAR_DISTANCE_EUCLIDEANSQ: for (int xi = xr - 1; xi <= xr + 1; xi++) { int yPrimed = yPrimedBase; for (int yi = yr - 1; yi <= yr + 1; yi++) { int hash = _fnlHash2D(seed, xPrimed, yPrimed); int idx = hash & (255 << 1); float vecX = (float)(xi - x) + RAND_VECS_2D[idx] * cellularJitter; float vecY = (float)(yi - y) + RAND_VECS_2D[idx | 1] * cellularJitter; float newDistance = vecX * vecX + vecY * vecY; distance1 = _fnlFastMax(_fnlFastMin(distance1, newDistance), distance0); if (newDistance < distance0) { distance0 = newDistance; closestHash = hash; } yPrimed += PRIME_Y; } xPrimed += PRIME_X; } break; case FNL_CELLULAR_DISTANCE_MANHATTAN: for (int xi = xr - 1; xi <= xr + 1; xi++) { int yPrimed = yPrimedBase; for (int yi = yr - 1; yi <= yr + 1; yi++) { int hash = _fnlHash2D(seed, xPrimed, yPrimed); int idx = hash & (255 << 1); float vecX = (float)(xi - x) + RAND_VECS_2D[idx] * cellularJitter; float vecY = (float)(yi - y) + RAND_VECS_2D[idx | 1] * cellularJitter; float newDistance = _fnlFastAbs(vecX) + _fnlFastAbs(vecY); distance1 = _fnlFastMax(_fnlFastMin(distance1, newDistance), distance0); if (newDistance < distance0) { distance0 = newDistance; closestHash = hash; } yPrimed += PRIME_Y; } xPrimed += PRIME_X; } break; case FNL_CELLULAR_DISTANCE_HYBRID: for (int xi = xr - 1; xi <= xr + 1; xi++) { int yPrimed = yPrimedBase; for (int yi = yr - 1; yi <= yr + 1; yi++) { int hash = _fnlHash2D(seed, xPrimed, yPrimed); int idx = hash & (255 << 1); float vecX = (float)(xi - x) + RAND_VECS_2D[idx] * cellularJitter; float vecY = (float)(yi - y) + RAND_VECS_2D[idx | 1] * cellularJitter; float newDistance = (_fnlFastAbs(vecX) + _fnlFastAbs(vecY)) + (vecX * vecX + vecY * vecY); distance1 = _fnlFastMax(_fnlFastMin(distance1, newDistance), distance0); if (newDistance < distance0) { distance0 = newDistance; closestHash = hash; } yPrimed += PRIME_Y; } xPrimed += PRIME_X; } break; } if (state->cellular_distance_func == FNL_CELLULAR_DISTANCE_EUCLIDEAN && state->cellular_return_type >= FNL_CELLULAR_RETURN_VALUE_DISTANCE) { distance0 = _fnlFastSqrt(distance0); if (state->cellular_return_type >= FNL_CELLULAR_RETURN_VALUE_DISTANCE2) distance1 = _fnlFastSqrt(distance1); } switch (state->cellular_return_type) { case FNL_CELLULAR_RETURN_VALUE_CELLVALUE: return closestHash * (1 / 2147483648.0f); case FNL_CELLULAR_RETURN_VALUE_DISTANCE: return distance0 - 1; case FNL_CELLULAR_RETURN_VALUE_DISTANCE2: return distance1 - 1; case FNL_CELLULAR_RETURN_VALUE_DISTANCE2ADD: return (distance1 + distance0) * 0.5f - 1; case FNL_CELLULAR_RETURN_VALUE_DISTANCE2SUB: return distance1 - distance0 - 1; case FNL_CELLULAR_RETURN_VALUE_DISTANCE2MUL: return distance1 * distance0 * 0.5f - 1; case FNL_CELLULAR_RETURN_VALUE_DISTANCE2DIV: return distance0 / distance1 - 1; default: return 0; } } static float _fnlSingleCellular3D(fnl_state *state, int seed, FNLfloat x, FNLfloat y, FNLfloat z) { int xr = _fnlFastRound(x); int yr = _fnlFastRound(y); int zr = _fnlFastRound(z); float distance0 = FLT_MAX; float distance1 = FLT_MAX; int closestHash = 0; float cellularJitter = 0.39614353f * state->cellular_jitter_mod; int xPrimed = (xr - 1) * PRIME_X; int yPrimedBase = (yr - 1) * PRIME_Y; int zPrimedBase = (zr - 1) * PRIME_Z; switch (state->cellular_distance_func) { default: case FNL_CELLULAR_DISTANCE_EUCLIDEAN: case FNL_CELLULAR_DISTANCE_EUCLIDEANSQ: for (int xi = xr - 1; xi <= xr + 1; xi++) { int yPrimed = yPrimedBase; for (int yi = yr - 1; yi <= yr + 1; yi++) { int zPrimed = zPrimedBase; for (int zi = zr - 1; zi <= zr + 1; zi++) { int hash = _fnlHash3D(seed, xPrimed, yPrimed, zPrimed); int idx = hash & (255 << 2); float vecX = (float)(xi - x) + RAND_VECS_3D[idx] * cellularJitter; float vecY = (float)(yi - y) + RAND_VECS_3D[idx | 1] * cellularJitter; float vecZ = (float)(zi - z) + RAND_VECS_3D[idx | 2] * cellularJitter; float newDistance = vecX * vecX + vecY * vecY + vecZ * vecZ; distance1 = _fnlFastMax(_fnlFastMin(distance1, newDistance), distance0); if (newDistance < distance0) { distance0 = newDistance; closestHash = hash; } zPrimed += PRIME_Z; } yPrimed += PRIME_Y; } xPrimed += PRIME_X; } break; case FNL_CELLULAR_DISTANCE_MANHATTAN: for (int xi = xr - 1; xi <= xr + 1; xi++) { int yPrimed = yPrimedBase; for (int yi = yr - 1; yi <= yr + 1; yi++) { int zPrimed = zPrimedBase; for (int zi = zr - 1; zi <= zr + 1; zi++) { int hash = _fnlHash3D(seed, xPrimed, yPrimed, zPrimed); int idx = hash & (255 << 2); float vecX = (float)(xi - x) + RAND_VECS_3D[idx] * cellularJitter; float vecY = (float)(yi - y) + RAND_VECS_3D[idx | 1] * cellularJitter; float vecZ = (float)(zi - z) + RAND_VECS_3D[idx | 2] * cellularJitter; float newDistance = _fnlFastAbs(vecX) + _fnlFastAbs(vecY) + _fnlFastAbs(vecZ); distance1 = _fnlFastMax(_fnlFastMin(distance1, newDistance), distance0); if (newDistance < distance0) { distance0 = newDistance; closestHash = hash; } zPrimed += PRIME_Z; } yPrimed += PRIME_Y; } xPrimed += PRIME_X; } break; case FNL_CELLULAR_DISTANCE_HYBRID: for (int xi = xr - 1; xi <= xr + 1; xi++) { int yPrimed = yPrimedBase; for (int yi = yr - 1; yi <= yr + 1; yi++) { int zPrimed = zPrimedBase; for (int zi = zr - 1; zi <= zr + 1; zi++) { int hash = _fnlHash3D(seed, xPrimed, yPrimed, zPrimed); int idx = hash & (255 << 2); float vecX = (float)(xi - x) + RAND_VECS_3D[idx] * cellularJitter; float vecY = (float)(yi - y) + RAND_VECS_3D[idx | 1] * cellularJitter; float vecZ = (float)(zi - z) + RAND_VECS_3D[idx | 2] * cellularJitter; float newDistance = (_fnlFastAbs(vecX) + _fnlFastAbs(vecY) + _fnlFastAbs(vecZ)) + (vecX * vecX + vecY * vecY + vecZ * vecZ); distance1 = _fnlFastMax(_fnlFastMin(distance1, newDistance), distance0); if (newDistance < distance0) { distance0 = newDistance; closestHash = hash; } zPrimed += PRIME_Z; } yPrimed += PRIME_Y; } xPrimed += PRIME_X; } break; } if (state->cellular_distance_func == FNL_CELLULAR_DISTANCE_EUCLIDEAN && state->cellular_return_type >= FNL_CELLULAR_RETURN_VALUE_DISTANCE) { distance0 = _fnlFastSqrt(distance0); if (state->cellular_return_type >= FNL_CELLULAR_RETURN_VALUE_DISTANCE2) distance1 = _fnlFastSqrt(distance1); } switch (state->cellular_return_type) { case FNL_CELLULAR_RETURN_VALUE_CELLVALUE: return closestHash * (1 / 2147483648.0f); case FNL_CELLULAR_RETURN_VALUE_DISTANCE: return distance0 - 1; case FNL_CELLULAR_RETURN_VALUE_DISTANCE2: return distance1 - 1; case FNL_CELLULAR_RETURN_VALUE_DISTANCE2ADD: return (distance1 + distance0) * 0.5f - 1; case FNL_CELLULAR_RETURN_VALUE_DISTANCE2SUB: return distance1 - distance0 - 1; case FNL_CELLULAR_RETURN_VALUE_DISTANCE2MUL: return distance1 * distance0 * 0.5f - 1; case FNL_CELLULAR_RETURN_VALUE_DISTANCE2DIV: return distance0 / distance1 - 1; default: return 0; } } // Perlin Noise static float _fnlSinglePerlin2D(int seed, FNLfloat x, FNLfloat y) { int x0 = _fnlFastFloor(x); int y0 = _fnlFastFloor(y); float xd0 = (float)(x - x0); float yd0 = (float)(y - y0); float xd1 = xd0 - 1; float yd1 = yd0 - 1; float xs = _fnlInterpQuintic(xd0); float ys = _fnlInterpQuintic(yd0); x0 *= PRIME_X; y0 *= PRIME_Y; int x1 = x0 + PRIME_X; int y1 = y0 + PRIME_Y; float xf0 = _fnlLerp(_fnlGradCoord2D(seed, x0, y0, xd0, yd0), _fnlGradCoord2D(seed, x1, y0, xd1, yd0), xs); float xf1 = _fnlLerp(_fnlGradCoord2D(seed, x0, y1, xd0, yd1), _fnlGradCoord2D(seed, x1, y1, xd1, yd1), xs); return _fnlLerp(xf0, xf1, ys) * 1.4247691104677813f; } static float _fnlSinglePerlin3D(int seed, FNLfloat x, FNLfloat y, FNLfloat z) { int x0 = _fnlFastFloor(x); int y0 = _fnlFastFloor(y); int z0 = _fnlFastFloor(z); float xd0 = (float)(x - x0); float yd0 = (float)(y - y0); float zd0 = (float)(z - z0); float xd1 = xd0 - 1; float yd1 = yd0 - 1; float zd1 = zd0 - 1; float xs = _fnlInterpQuintic(xd0); float ys = _fnlInterpQuintic(yd0); float zs = _fnlInterpQuintic(zd0); x0 *= PRIME_X; y0 *= PRIME_Y; z0 *= PRIME_Z; int x1 = x0 + PRIME_X; int y1 = y0 + PRIME_Y; int z1 = z0 + PRIME_Z; float xf00 = _fnlLerp(_fnlGradCoord3D(seed, x0, y0, z0, xd0, yd0, zd0), _fnlGradCoord3D(seed, x1, y0, z0, xd1, yd0, zd0), xs); float xf10 = _fnlLerp(_fnlGradCoord3D(seed, x0, y1, z0, xd0, yd1, zd0), _fnlGradCoord3D(seed, x1, y1, z0, xd1, yd1, zd0), xs); float xf01 = _fnlLerp(_fnlGradCoord3D(seed, x0, y0, z1, xd0, yd0, zd1), _fnlGradCoord3D(seed, x1, y0, z1, xd1, yd0, zd1), xs); float xf11 = _fnlLerp(_fnlGradCoord3D(seed, x0, y1, z1, xd0, yd1, zd1), _fnlGradCoord3D(seed, x1, y1, z1, xd1, yd1, zd1), xs); float yf0 = _fnlLerp(xf00, xf10, ys); float yf1 = _fnlLerp(xf01, xf11, ys); return _fnlLerp(yf0, yf1, zs) * 0.964921414852142333984375f; } // Value Cubic static float _fnlSingleValueCubic2D(int seed, FNLfloat x, FNLfloat y) { int x1 = _fnlFastFloor(x); int y1 = _fnlFastFloor(y); float xs = x - (float)x1; float ys = y - (float)y1; x1 *= PRIME_X; y1 *= PRIME_Y; int x0 = x1 - PRIME_X; int y0 = y1 - PRIME_Y; int x2 = x1 + PRIME_X; int y2 = y1 + PRIME_Y; int x3 = x1 + (int)((long)PRIME_X << 1); int y3 = y1 + (int)((long)PRIME_Y << 1); return _fnlCubicLerp( _fnlCubicLerp(_fnlValCoord2D(seed, x0, y0), _fnlValCoord2D(seed, x1, y0), _fnlValCoord2D(seed, x2, y0), _fnlValCoord2D(seed, x3, y0), xs), _fnlCubicLerp(_fnlValCoord2D(seed, x0, y1), _fnlValCoord2D(seed, x1, y1), _fnlValCoord2D(seed, x2, y1), _fnlValCoord2D(seed, x3, y1), xs), _fnlCubicLerp(_fnlValCoord2D(seed, x0, y2), _fnlValCoord2D(seed, x1, y2), _fnlValCoord2D(seed, x2, y2), _fnlValCoord2D(seed, x3, y2), xs), _fnlCubicLerp(_fnlValCoord2D(seed, x0, y3), _fnlValCoord2D(seed, x1, y3), _fnlValCoord2D(seed, x2, y3), _fnlValCoord2D(seed, x3, y3), xs), ys) * (1 / (1.5f * 1.5f)); } static float _fnlSingleValueCubic3D(int seed, FNLfloat x, FNLfloat y, FNLfloat z) { int x1 = _fnlFastFloor(x); int y1 = _fnlFastFloor(y); int z1 = _fnlFastFloor(z); float xs = x - (float)x1; float ys = y - (float)y1; float zs = z - (float)z1; x1 *= PRIME_X; y1 *= PRIME_Y; z1 *= PRIME_Z; int x0 = x1 - PRIME_X; int y0 = y1 - PRIME_Y; int z0 = z1 - PRIME_Z; int x2 = x1 + PRIME_X; int y2 = y1 + PRIME_Y; int z2 = z1 + PRIME_Z; int x3 = x1 + (int)((long)PRIME_X << 1); int y3 = y1 + (int)((long)PRIME_Y << 1); int z3 = z1 + (int)((long)PRIME_Z << 1); return _fnlCubicLerp( _fnlCubicLerp( _fnlCubicLerp(_fnlValCoord3D(seed, x0, y0, z0), _fnlValCoord3D(seed, x1, y0, z0), _fnlValCoord3D(seed, x2, y0, z0), _fnlValCoord3D(seed, x3, y0, z0), xs), _fnlCubicLerp(_fnlValCoord3D(seed, x0, y1, z0), _fnlValCoord3D(seed, x1, y1, z0), _fnlValCoord3D(seed, x2, y1, z0), _fnlValCoord3D(seed, x3, y1, z0), xs), _fnlCubicLerp(_fnlValCoord3D(seed, x0, y2, z0), _fnlValCoord3D(seed, x1, y2, z0), _fnlValCoord3D(seed, x2, y2, z0), _fnlValCoord3D(seed, x3, y2, z0), xs), _fnlCubicLerp(_fnlValCoord3D(seed, x0, y3, z0), _fnlValCoord3D(seed, x1, y3, z0), _fnlValCoord3D(seed, x2, y3, z0), _fnlValCoord3D(seed, x3, y3, z0), xs), ys), _fnlCubicLerp( _fnlCubicLerp(_fnlValCoord3D(seed, x0, y0, z1), _fnlValCoord3D(seed, x1, y0, z1), _fnlValCoord3D(seed, x2, y0, z1), _fnlValCoord3D(seed, x3, y0, z1), xs), _fnlCubicLerp(_fnlValCoord3D(seed, x0, y1, z1), _fnlValCoord3D(seed, x1, y1, z1), _fnlValCoord3D(seed, x2, y1, z1), _fnlValCoord3D(seed, x3, y1, z1), xs), _fnlCubicLerp(_fnlValCoord3D(seed, x0, y2, z1), _fnlValCoord3D(seed, x1, y2, z1), _fnlValCoord3D(seed, x2, y2, z1), _fnlValCoord3D(seed, x3, y2, z1), xs), _fnlCubicLerp(_fnlValCoord3D(seed, x0, y3, z1), _fnlValCoord3D(seed, x1, y3, z1), _fnlValCoord3D(seed, x2, y3, z1), _fnlValCoord3D(seed, x3, y3, z1), xs), ys), _fnlCubicLerp( _fnlCubicLerp(_fnlValCoord3D(seed, x0, y0, z2), _fnlValCoord3D(seed, x1, y0, z2), _fnlValCoord3D(seed, x2, y0, z2), _fnlValCoord3D(seed, x3, y0, z2), xs), _fnlCubicLerp(_fnlValCoord3D(seed, x0, y1, z2), _fnlValCoord3D(seed, x1, y1, z2), _fnlValCoord3D(seed, x2, y1, z2), _fnlValCoord3D(seed, x3, y1, z2), xs), _fnlCubicLerp(_fnlValCoord3D(seed, x0, y2, z2), _fnlValCoord3D(seed, x1, y2, z2), _fnlValCoord3D(seed, x2, y2, z2), _fnlValCoord3D(seed, x3, y2, z2), xs), _fnlCubicLerp(_fnlValCoord3D(seed, x0, y3, z2), _fnlValCoord3D(seed, x1, y3, z2), _fnlValCoord3D(seed, x2, y3, z2), _fnlValCoord3D(seed, x3, y3, z2), xs), ys), _fnlCubicLerp( _fnlCubicLerp(_fnlValCoord3D(seed, x0, y0, z3), _fnlValCoord3D(seed, x1, y0, z3), _fnlValCoord3D(seed, x2, y0, z3), _fnlValCoord3D(seed, x3, y0, z3), xs), _fnlCubicLerp(_fnlValCoord3D(seed, x0, y1, z3), _fnlValCoord3D(seed, x1, y1, z3), _fnlValCoord3D(seed, x2, y1, z3), _fnlValCoord3D(seed, x3, y1, z3), xs), _fnlCubicLerp(_fnlValCoord3D(seed, x0, y2, z3), _fnlValCoord3D(seed, x1, y2, z3), _fnlValCoord3D(seed, x2, y2, z3), _fnlValCoord3D(seed, x3, y2, z3), xs), _fnlCubicLerp(_fnlValCoord3D(seed, x0, y3, z3), _fnlValCoord3D(seed, x1, y3, z3), _fnlValCoord3D(seed, x2, y3, z3), _fnlValCoord3D(seed, x3, y3, z3), xs), ys), zs) * (1 / 1.5f * 1.5f * 1.5f); } // Value noise static float _fnlSingleValue2D(int seed, FNLfloat x, FNLfloat y) { int x0 = _fnlFastFloor(x); int y0 = _fnlFastFloor(y); float xs = _fnlInterpHermite((float)(x - x0)); float ys = _fnlInterpHermite((float)(y - y0)); x0 *= PRIME_X; y0 *= PRIME_Y; int x1 = x0 + PRIME_X; int y1 = y0 + PRIME_Y; float xf0 = _fnlLerp(_fnlValCoord2D(seed, x0, y0), _fnlValCoord2D(seed, x1, y0), xs); float xf1 = _fnlLerp(_fnlValCoord2D(seed, x0, y1), _fnlValCoord2D(seed, x1, y1), xs); return _fnlLerp(xf0, xf1, ys); } static float _fnlSingleValue3D(int seed, FNLfloat x, FNLfloat y, FNLfloat z) { int x0 = _fnlFastFloor(x); int y0 = _fnlFastFloor(y); int z0 = _fnlFastFloor(z); float xs = _fnlInterpHermite((float)(x - x0)); float ys = _fnlInterpHermite((float)(y - y0)); float zs = _fnlInterpHermite((float)(z - z0)); x0 *= PRIME_X; y0 *= PRIME_Y; z0 *= PRIME_Z; int x1 = x0 + PRIME_X; int y1 = y0 + PRIME_Y; int z1 = z0 + PRIME_Z; float xf00 = _fnlLerp(_fnlValCoord3D(seed, x0, y0, z0), _fnlValCoord3D(seed, x1, y0, z0), xs); float xf10 = _fnlLerp(_fnlValCoord3D(seed, x0, y1, z0), _fnlValCoord3D(seed, x1, y1, z0), xs); float xf01 = _fnlLerp(_fnlValCoord3D(seed, x0, y0, z1), _fnlValCoord3D(seed, x1, y0, z1), xs); float xf11 = _fnlLerp(_fnlValCoord3D(seed, x0, y1, z1), _fnlValCoord3D(seed, x1, y1, z1), xs); float yf0 = _fnlLerp(xf00, xf10, ys); float yf1 = _fnlLerp(xf01, xf11, ys); return _fnlLerp(yf0, yf1, zs); } // Domain Warp // Forward declare static void _fnlSingleDomainWarpBasicGrid2D(int seed, float warpAmp, float frequency, FNLfloat x, FNLfloat y, FNLfloat *xp, FNLfloat *yp); static void _fnlSingleDomainWarpBasicGrid3D(int seed, float warpAmp, float frequency, FNLfloat x, FNLfloat y, FNLfloat z, FNLfloat *xp, FNLfloat *yp, FNLfloat *zp); static void _fnlSingleDomainWarpSimplexGradient(int seed, float warpAmp, float frequency, FNLfloat x, FNLfloat y, FNLfloat *xr, FNLfloat *yr, bool outGradOnly); static void _fnlSingleDomainWarpOpenSimplex2Gradient(int seed, float warpAmp, float frequency, FNLfloat x, FNLfloat y, FNLfloat z, FNLfloat *xr, FNLfloat *yr, FNLfloat *zr, bool outGradOnly); static inline void _fnlDoSingleDomainWarp2D(fnl_state *state, int seed, float amp, float freq, FNLfloat x, FNLfloat y, FNLfloat *xp, FNLfloat *yp) { switch (state->domain_warp_type) { case FNL_DOMAIN_WARP_OPENSIMPLEX2: _fnlSingleDomainWarpSimplexGradient(seed, amp * 38.283687591552734375f, freq, x, y, xp, yp, false); break; case FNL_DOMAIN_WARP_OPENSIMPLEX2_REDUCED: _fnlSingleDomainWarpSimplexGradient(seed, amp * 16.0f, freq, x, y, xp, yp, true); break; case FNL_DOMAIN_WARP_BASICGRID: _fnlSingleDomainWarpBasicGrid2D(seed, amp, freq, x, y, xp, yp); break; } } static inline void _fnlDoSingleDomainWarp3D(fnl_state *state, int seed, float amp, float freq, FNLfloat x, FNLfloat y, FNLfloat z, FNLfloat *xp, FNLfloat *yp, FNLfloat *zp) { switch (state->domain_warp_type) { case FNL_DOMAIN_WARP_OPENSIMPLEX2: _fnlSingleDomainWarpOpenSimplex2Gradient(seed, amp * 32.69428253173828125f, freq, x, y, z, xp, yp, zp, false); break; case FNL_DOMAIN_WARP_OPENSIMPLEX2_REDUCED: _fnlSingleDomainWarpOpenSimplex2Gradient(seed, amp * 7.71604938271605f, freq, x, y, z, xp, yp, zp, true); break; case FNL_DOMAIN_WARP_BASICGRID: _fnlSingleDomainWarpBasicGrid3D(seed, amp, freq, x, y, z, xp, yp, zp); break; } } // Domain Warp Single Wrapper static void _fnlDomainWarpSingle2D(fnl_state *state, FNLfloat *x, FNLfloat *y) { int seed = state->seed; float amp = state->domain_warp_amp * _fnlCalculateFractalBounding(state); float freq = state->frequency; FNLfloat xs = *x; FNLfloat ys = *y; _fnlTransformDomainWarpCoordinate2D(state, &xs, &ys); _fnlDoSingleDomainWarp2D(state, seed, amp, freq, xs, ys, x, y); } static void _fnlDomainWarpSingle3D(fnl_state *state, FNLfloat *x, FNLfloat *y, FNLfloat *z) { int seed = state->seed; float amp = state->domain_warp_amp * _fnlCalculateFractalBounding(state); float freq = state->frequency; FNLfloat xs = *x; FNLfloat ys = *y; FNLfloat zs = *z; _fnlTransformDomainWarpCoordinate3D(state, &xs, &ys, &zs); _fnlDoSingleDomainWarp3D(state, seed, amp, freq, xs, ys, zs, x, y, z); } // Domain Warp Fractal Progressive static void _fnlDomainWarpFractalProgressive2D(fnl_state *state, FNLfloat *x, FNLfloat *y) { int seed = state->seed; float amp = state->domain_warp_amp * _fnlCalculateFractalBounding(state); float freq = state->frequency; for (int i = 0; i < state->octaves; i++) { FNLfloat xs = *x; FNLfloat ys = *y; _fnlTransformDomainWarpCoordinate2D(state, &xs, &ys); _fnlDoSingleDomainWarp2D(state, seed, amp, freq, xs, ys, x, y); seed++; amp *= state->gain; freq *= state->lacunarity; } } static void _fnlDomainWarpFractalProgressive3D(fnl_state *state, FNLfloat *x, FNLfloat *y, FNLfloat *z) { int seed = state->seed; float amp = state->domain_warp_amp * _fnlCalculateFractalBounding(state); float freq = state->frequency; for (int i = 0; i < state->octaves; i++) { FNLfloat xs = *x; FNLfloat ys = *y; FNLfloat zs = *z; _fnlTransformDomainWarpCoordinate3D(state, &xs, &ys, &zs); _fnlDoSingleDomainWarp3D(state, seed, amp, freq, xs, ys, zs, x, y, z); seed++; amp *= state->gain; freq *= state->lacunarity; } } // Domain Warp Fractal Independent static void _fnlDomainWarpFractalIndependent2D(fnl_state *state, FNLfloat *x, FNLfloat *y) { FNLfloat xs = *x; FNLfloat ys = *y; _fnlTransformDomainWarpCoordinate2D(state, &xs, &ys); int seed = state->seed; float amp = state->domain_warp_amp * _fnlCalculateFractalBounding(state); float freq = state->frequency; for (int i = 0; i < state->octaves; i++) { _fnlDoSingleDomainWarp2D(state, seed, amp, freq, xs, ys, x, y); seed++; amp *= state->gain; freq *= state->lacunarity; } } static void _fnlDomainWarpFractalIndependent3D(fnl_state *state, FNLfloat *x, FNLfloat *y, FNLfloat *z) { FNLfloat xs = *x; FNLfloat ys = *y; FNLfloat zs = *z; _fnlTransformDomainWarpCoordinate3D(state, &xs, &ys, &zs); int seed = state->seed; float amp = state->domain_warp_amp * _fnlCalculateFractalBounding(state); float freq = state->frequency; for (int i = 0; i < state->octaves; i++) { _fnlDoSingleDomainWarp3D(state, seed, amp, freq, xs, ys, zs, x, y, z); seed++; amp *= state->gain; freq *= state->lacunarity; } } // Domain Warp Basic Grid static void _fnlSingleDomainWarpBasicGrid2D(int seed, float warpAmp, float frequency, FNLfloat x, FNLfloat y, FNLfloat *xp, FNLfloat *yp) { FNLfloat xf = x * frequency; FNLfloat yf = y * frequency; int x0 = _fnlFastFloor(xf); int y0 = _fnlFastFloor(yf); float xs = _fnlInterpHermite((float)(xf - x0)); float ys = _fnlInterpHermite((float)(yf - y0)); x0 *= PRIME_X; y0 *= PRIME_Y; int x1 = x0 + PRIME_X; int y1 = y0 + PRIME_Y; int idx0 = _fnlHash2D(seed, x0, y0) & (255 << 1); int idx1 = _fnlHash2D(seed, x1, y0) & (255 << 1); float lx0x = _fnlLerp(RAND_VECS_2D[idx0], RAND_VECS_2D[idx1], xs); float ly0x = _fnlLerp(RAND_VECS_2D[idx0 | 1], RAND_VECS_2D[idx1 | 1], xs); idx0 = _fnlHash2D(seed, x0, y1) & (255 << 1); idx1 = _fnlHash2D(seed, x1, y1) & (255 << 1); float lx1x = _fnlLerp(RAND_VECS_2D[idx0], RAND_VECS_2D[idx1], xs); float ly1x = _fnlLerp(RAND_VECS_2D[idx0 | 1], RAND_VECS_2D[idx1 | 1], xs); *xp += _fnlLerp(lx0x, lx1x, ys) * warpAmp; *yp += _fnlLerp(ly0x, ly1x, ys) * warpAmp; } static void _fnlSingleDomainWarpBasicGrid3D(int seed, float warpAmp, float frequency, FNLfloat x, FNLfloat y, FNLfloat z, FNLfloat *xp, FNLfloat *yp, FNLfloat *zp) { FNLfloat xf = x * frequency; FNLfloat yf = y * frequency; FNLfloat zf = z * frequency; int x0 = _fnlFastFloor(xf); int y0 = _fnlFastFloor(yf); int z0 = _fnlFastFloor(zf); float xs = _fnlInterpHermite((float)(xf - x0)); float ys = _fnlInterpHermite((float)(yf - y0)); float zs = _fnlInterpHermite((float)(zf - z0)); x0 *= PRIME_X; y0 *= PRIME_Y; z0 *= PRIME_Z; int x1 = x0 + PRIME_X; int y1 = y0 + PRIME_Y; int z1 = z0 + PRIME_Z; int idx0 = _fnlHash3D(seed, x0, y0, z0) & (255 << 2); int idx1 = _fnlHash3D(seed, x1, y0, z0) & (255 << 2); float lx0x = _fnlLerp(RAND_VECS_3D[idx0], RAND_VECS_3D[idx1], xs); float ly0x = _fnlLerp(RAND_VECS_3D[idx0 | 1], RAND_VECS_3D[idx1 | 1], xs); float lz0x = _fnlLerp(RAND_VECS_3D[idx0 | 2], RAND_VECS_3D[idx1 | 2], xs); idx0 = _fnlHash3D(seed, x0, y1, z0) & (255 << 2); idx1 = _fnlHash3D(seed, x1, y1, z0) & (255 << 2); float lx1x = _fnlLerp(RAND_VECS_3D[idx0], RAND_VECS_3D[idx1], xs); float ly1x = _fnlLerp(RAND_VECS_3D[idx0 | 1], RAND_VECS_3D[idx1 | 1], xs); float lz1x = _fnlLerp(RAND_VECS_3D[idx0 | 2], RAND_VECS_3D[idx1 | 2], xs); float lx0y = _fnlLerp(lx0x, lx1x, ys); float ly0y = _fnlLerp(ly0x, ly1x, ys); float lz0y = _fnlLerp(lz0x, lz1x, ys); idx0 = _fnlHash3D(seed, x0, y0, z1) & (255 << 2); idx1 = _fnlHash3D(seed, x1, y0, z1) & (255 << 2); lx0x = _fnlLerp(RAND_VECS_3D[idx0], RAND_VECS_3D[idx1], xs); ly0x = _fnlLerp(RAND_VECS_3D[idx0 | 1], RAND_VECS_3D[idx1 | 1], xs); lz0x = _fnlLerp(RAND_VECS_3D[idx0 | 2], RAND_VECS_3D[idx1 | 2], xs); idx0 = _fnlHash3D(seed, x0, y1, z1) & (255 << 2); idx1 = _fnlHash3D(seed, x1, y1, z1) & (255 << 2); lx1x = _fnlLerp(RAND_VECS_3D[idx0], RAND_VECS_3D[idx1], xs); ly1x = _fnlLerp(RAND_VECS_3D[idx0 | 1], RAND_VECS_3D[idx1 | 1], xs); lz1x = _fnlLerp(RAND_VECS_3D[idx0 | 2], RAND_VECS_3D[idx1 | 2], xs); *xp += _fnlLerp(lx0y, _fnlLerp(lx0x, lx1x, ys), zs) * warpAmp; *yp += _fnlLerp(ly0y, _fnlLerp(ly0x, ly1x, ys), zs) * warpAmp; *zp += _fnlLerp(lz0y, _fnlLerp(lz0x, lz1x, ys), zs) * warpAmp; } // Domain Warp Simplex/OpenSimplex2 static void _fnlSingleDomainWarpSimplexGradient(int seed, float warpAmp, float frequency, FNLfloat x, FNLfloat y, FNLfloat *xr, FNLfloat *yr, bool outGradOnly) { const float SQRT3 = 1.7320508075688772935274463415059f; const float G2 = (3 - SQRT3) / 6; x *= frequency; y *= frequency; /* * --- Skew moved to TransformNoiseCoordinate method --- * const FNLfloat F2 = 0.5f * (SQRT3 - 1); * FNLfloat s = (x + y) * F2; * x += s; y += s; */ int i = _fnlFastFloor(x); int j = _fnlFastFloor(y); float xi = (float)(x - i); float yi = (float)(y - j); float t = (xi + yi) * G2; float x0 = (float)(xi - t); float y0 = (float)(yi - t); i *= PRIME_X; j *= PRIME_Y; float vx, vy; vx = vy = 0; float a = 0.5f - x0 * x0 - y0 * y0; if (a > 0) { float aaaa = (a * a) * (a * a); float xo, yo; if (outGradOnly) _fnlGradCoordOut2D(seed, i, j, &xo, &yo); else _fnlGradCoordDual2D(seed, i, j, x0, y0, &xo, &yo); vx += aaaa * xo; vy += aaaa * yo; } float c = (float)(2 * (1 - 2 * G2) * (1 / G2 - 2)) * t + ((float)(-2 * (1 - 2 * G2) * (1 - 2 * G2)) + a); if (c > 0) { float x2 = x0 + (2 * (float)G2 - 1); float y2 = y0 + (2 * (float)G2 - 1); float cccc = (c * c) * (c * c); float xo, yo; if (outGradOnly) _fnlGradCoordOut2D(seed, i + PRIME_X, j + PRIME_Y, &xo, &yo); else _fnlGradCoordDual2D(seed, i + PRIME_X, j + PRIME_Y, x2, y2, &xo, &yo); vx += cccc * xo; vy += cccc * yo; } if (y0 > x0) { float x1 = x0 + (float)G2; float y1 = y0 + ((float)G2 - 1); float b = 0.5f - x1 * x1 - y1 * y1; if (b > 0) { float bbbb = (b * b) * (b * b); float xo, yo; if (outGradOnly) _fnlGradCoordOut2D(seed, i, j + PRIME_Y, &xo, &yo); else _fnlGradCoordDual2D(seed, i, j + PRIME_Y, x1, y1, &xo, &yo); vx += bbbb * xo; vy += bbbb * yo; } } else { float x1 = x0 + ((float)G2 - 1); float y1 = y0 + (float)G2; float b = 0.5f - x1 * x1 - y1 * y1; if (b > 0) { float bbbb = (b * b) * (b * b); float xo, yo; if (outGradOnly) _fnlGradCoordOut2D(seed, i + PRIME_X, j, &xo, &yo); else _fnlGradCoordDual2D(seed, i + PRIME_X, j, x1, y1, &xo, &yo); vx += bbbb * xo; vy += bbbb * yo; } } *xr += vx * warpAmp; *yr += vy * warpAmp; } static void _fnlSingleDomainWarpOpenSimplex2Gradient(int seed, float warpAmp, float frequency, FNLfloat x, FNLfloat y, FNLfloat z, FNLfloat *xr, FNLfloat *yr, FNLfloat *zr, bool outGradOnly) { x *= frequency; y *= frequency; z *= frequency; /* * --- Rotation moved to TransformDomainWarpCoordinate method --- * const FNLfloat R3 = (FNLfloat)(2.0 / 3.0); * FNLfloat r = (x + y + z) * R3; // Rotation, not skew * x = r - x; y = r - y; z = r - z; */ int i = _fnlFastRound(x); int j = _fnlFastRound(y); int k = _fnlFastRound(z); float x0 = (float)x - i; float y0 = (float)y - j; float z0 = (float)z - k; int xNSign = (int)(-x0 - 1.0f) | 1; int yNSign = (int)(-y0 - 1.0f) | 1; int zNSign = (int)(-z0 - 1.0f) | 1; float ax0 = xNSign * -x0; float ay0 = yNSign * -y0; float az0 = zNSign * -z0; i *= PRIME_X; j *= PRIME_Y; k *= PRIME_Z; float vx, vy, vz; vx = vy = vz = 0; float a = (0.6f - x0 * x0) - (y0 * y0 + z0 * z0); for (int l = 0; l < 2; l++) { if (a > 0) { float aaaa = (a * a) * (a * a); float xo, yo, zo; if (outGradOnly) _fnlGradCoordOut3D(seed, i, j, k, &xo, &yo, &zo); else _fnlGradCoordDual3D(seed, i, j, k, x0, y0, z0, &xo, &yo, &zo); vx += aaaa * xo; vy += aaaa * yo; vz += aaaa * zo; } float b = a + 1; int i1 = i; int j1 = j; int k1 = k; float x1 = x0; float y1 = y0; float z1 = z0; if (ax0 >= ay0 && ax0 >= az0) { x1 += xNSign; b -= xNSign * 2 * x1; i1 -= xNSign * PRIME_X; } else if (ay0 > ax0 && ay0 >= az0) { y1 += yNSign; b -= yNSign * 2 * y1; j1 -= yNSign * PRIME_Y; } else { z1 += zNSign; b -= zNSign * 2 * z1; k1 -= zNSign * PRIME_Z; } if (b > 0) { float bbbb = (b * b) * (b * b); float xo, yo, zo; if (outGradOnly) _fnlGradCoordOut3D(seed, i1, j1, k1, &xo, &yo, &zo); else _fnlGradCoordDual3D(seed, i1, j1, k1, x1, y1, z1, &xo, &yo, &zo); vx += bbbb * xo; vy += bbbb * yo; vz += bbbb * zo; } if (l == 1) break; ax0 = 0.5f - ax0; ay0 = 0.5f - ay0; az0 = 0.5f - az0; x0 = xNSign * ax0; y0 = yNSign * ay0; z0 = zNSign * az0; a += (0.75f - ax0) - (ay0 + az0); i += (xNSign >> 1) & PRIME_X; j += (yNSign >> 1) & PRIME_Y; k += (zNSign >> 1) & PRIME_Z; xNSign = -xNSign; yNSign = -yNSign; zNSign = -zNSign; seed += 1293373; } *xr += vx * warpAmp; *yr += vy * warpAmp; *zr += vz * warpAmp; } // ==================== // Public API // ==================== fnl_state fnlCreateState() { fnl_state newState; newState.seed = 0; newState.frequency = 0.01f; newState.noise_type = FNL_NOISE_OPENSIMPLEX2; newState.rotation_type_3d = FNL_ROTATION_NONE; newState.fractal_type = FNL_FRACTAL_NONE; newState.octaves = 3; newState.lacunarity = 2.0f; newState.gain = 0.5f; newState.weighted_strength = 0.0f; newState.ping_pong_strength = 2.0f; newState.cellular_distance_func = FNL_CELLULAR_DISTANCE_EUCLIDEANSQ; newState.cellular_return_type = FNL_CELLULAR_RETURN_VALUE_DISTANCE; newState.cellular_jitter_mod = 1.0f; newState.domain_warp_amp = 30.0f; newState.domain_warp_type = FNL_DOMAIN_WARP_OPENSIMPLEX2; return newState; } float fnlGetNoise2D(fnl_state *state, FNLfloat x, FNLfloat y) { _fnlTransformNoiseCoordinate2D(state, &x, &y); switch (state->fractal_type) { default: return _fnlGenNoiseSingle2D(state, state->seed, x, y); case FNL_FRACTAL_FBM: return _fnlGenFractalFBM2D(state, x, y); case FNL_FRACTAL_RIDGED: return _fnlGenFractalRidged2D(state, x, y); case FNL_FRACTAL_PINGPONG: return _fnlGenFractalPingPong2D(state, x, y); } } float fnlGetNoise3D(fnl_state *state, FNLfloat x, FNLfloat y, FNLfloat z) { _fnlTransformNoiseCoordinate3D(state, &x, &y, &z); // Select a noise type switch (state->fractal_type) { default: return _fnlGenNoiseSingle3D(state, state->seed, x, y, z); case FNL_FRACTAL_FBM: return _fnlGenFractalFBM3D(state, x, y, z); case FNL_FRACTAL_RIDGED: return _fnlGenFractalRidged3D(state, x, y, z); case FNL_FRACTAL_PINGPONG: return _fnlGenFractalPingPong3D(state, x, y, z); } } void fnlDomainWarp2D(fnl_state *state, FNLfloat *x, FNLfloat *y) { switch (state->fractal_type) { default: _fnlDomainWarpSingle2D(state, x, y); break; case FNL_FRACTAL_DOMAIN_WARP_PROGRESSIVE: _fnlDomainWarpFractalProgressive2D(state, x, y); break; case FNL_FRACTAL_DOMAIN_WARP_INDEPENDENT: _fnlDomainWarpFractalIndependent2D(state, x, y); break; } } void fnlDomainWarp3D(fnl_state *state, FNLfloat *x, FNLfloat *y, FNLfloat *z) { switch (state->fractal_type) { default: _fnlDomainWarpSingle3D(state, x, y, z); break; case FNL_FRACTAL_DOMAIN_WARP_PROGRESSIVE: _fnlDomainWarpFractalProgressive3D(state, x, y, z); break; case FNL_FRACTAL_DOMAIN_WARP_INDEPENDENT: _fnlDomainWarpFractalIndependent3D(state, x, y, z); break; } } #endif // FNL_IMPL #if defined(__cplusplus) } #endif #endif // FASTNOISELITE_H